Ten years after its initial description, ferroptosis has emerged as the most intensely studied entity among the non-apoptotic forms of regulated cell death. The molecular features of ferroptotic cell death and its functional role have been characterized in vitro and in an ever-growing number of animal studies, demonstrating that it exerts either highly detrimental or, depending on the context, occasionally beneficial effects on the organism. Consequently, two contrary therapeutic approaches are being explored to exploit our detailed understanding of this cell death pathway: the inhibition of ferroptosis to limit organ damage in disorders such as drug-induced toxicity or ischemia-reperfusion injury, and the induction of ferroptosis in cancer cells to ameliorate anti-tumor strategies. However, the path from basic science to clinical utility is rocky. Emphasizing ferroptosis inhibition, we review the success and failures thus far in the translational process from basic research in the laboratory to the treatment of patients.