There is always time and energy optimization and reduction of faults the aim of research and in this context our article presents a study of a practical case of the deformation of a plastic part placed in a refrigerator for food storage, and that the use increases in number of these types of metals, are found in several sectors, and because of their industrial performance, a minimum residence time of the part in the mold is sought in order to reduce the cycle time of the process at the same time that the injection process is quite complex and requires a certain number of recurring questions to succeed. In the desired model. These are linked to residual stresses and deformations, pressure, mold temperature, filling threshold, shape of the part, but also to other mechanical and optical properties. Several investigations have been carried out and according to the authors the causes of these failures vary according to the manufacturing technique used. In this article, we try to find the origin of a deformation detected on a part at the end of the mold. Our work consists first of all in presenting, according to different studies, the thermomechanical properties of the material injected at different stages of the injection process. In a second step, compare the theoretical and analytical results. At the end of our study, we propose an optimization of the parameters necessary for the success of the molding and of the geometry of the assembly (mold and part).