Electrospinning of a polymer melt is an ideal technique to produce highly porous nanofibrous or microfibrous scaffolds appropriate for biomedical applications. In recent decades, melt electrospinning has been known as an eco‐friendly procedure as it eliminates the cytotoxic effects of the solvents used in solution electrospinning. In this work, the effects of spinning conditions such as temperature, applied voltage, nozzle to collector distance and collector type as well as polyethylene glycol (PEG) concentration on the diameter of melt electrospun polylactic acid (PLA)/PEG fibers were studied. The thermal stability of PLA/PEG blends was monitored through TGA and rheometry. Morphological investigations were carried out via optical and scanning electron microscopy. Based on the results, blends were almost stable over the temperature range of melt electrospinning (170 − 230 °C) and a short spinning time of 5 min. To obtain non‐woven meshes with uniform fiber morphologies, experimental parameters were optimized using ANOVA. While increasing the temperature, applied voltage and PEG content resulted in thinner fibers, PEG concentration was the most influential factor on the fiber diameter. In addition, a nozzle to collector distance of 10 cm was found to be the most suitable for preparing uniform non‐woven PLA/PEG meshes. At higher PEG concentrations, alterations in the collector distance did not affect the uniformity of fibers, although at lower distances vigorous bending instabilities due to polarity augmentation and viscosity reduction resulted in curly fibrous meshes. Finally, the finest and submicron scale fibers were obtained through melt electrospinning of PLA/PEG (70/30) blend collected on a metallic frame. © 2017 Society of Chemical Industry