2016
DOI: 10.1007/s41324-016-0039-5
|View full text |Cite
|
Sign up to set email alerts
|

Evaluating residential location inference of twitter users at district level: focused on Seoul city

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1
1
1

Citation Types

0
3
0
1

Year Published

2016
2016
2023
2023

Publication Types

Select...
4

Relationship

0
4

Authors

Journals

citations
Cited by 4 publications
(4 citation statements)
references
References 9 publications
0
3
0
1
Order By: Relevance
“…3 Kim et al, (2016), expusieron que las personas viven actualmente en la era que escriben a través de sus teléfonos móviles información de forma voluntaria a través de servicios de notificación simple (SNS), es decir, datos masivos en tiempo real, que son fácilmente compartidos y analizados. Agregan que, a diferencia de otros SNS, Twitter proporciona aplicación abierta de forma gratuita, lo que permite a investigadores, empresas y oficinas gubernamentales ubicar, recuperar información y analizar datos para diversos fines.…”
Section: Pp 210-227unclassified
“…3 Kim et al, (2016), expusieron que las personas viven actualmente en la era que escriben a través de sus teléfonos móviles información de forma voluntaria a través de servicios de notificación simple (SNS), es decir, datos masivos en tiempo real, que son fácilmente compartidos y analizados. Agregan que, a diferencia de otros SNS, Twitter proporciona aplicación abierta de forma gratuita, lo que permite a investigadores, empresas y oficinas gubernamentales ubicar, recuperar información y analizar datos para diversos fines.…”
Section: Pp 210-227unclassified
“…For such purpose, words are sorted in order from a word with larger frequent count to a word with smaller frequent count so that words that appear frequently in the entire area become patient nodes and words that appear less frequently in the entire area become child nodes, and then words are converted to wids (3). The spatial coordinates of ssd are mapped in spatial partition unit on the hierarchical spatial grid grid and gid is allocated (5).A new wordset data is inserted by entering wids and gid of ssd on sfpTree (6). If the traversal for all data in the social database is finished, the construction of sfpTree is completed.…”
Section: Construction Of Sfp-treementioning
confidence: 99%
“…Next, header table FTcondTree of spatial word condition tree condTree and condTree is extracted from all spatial words (w, gid) in FT Li using spatialWordCondTree. In order to minimize the size of condTree created in each traversal, inverse traversal is carried out in order from a word with smaller count to a word with larger count (5)(6). The spatial word condition tree is non-spatial prefix tree that only extracts the tree part which satisfies a specific word w and a specific space gid from sfpTree which includes spatial information.…”
Section: Sfp-growthmentioning
confidence: 99%
See 1 more Smart Citation