Luxury cruise ships are high-end passenger ships with facilities on board for the leisure and entertainment of passengers, so the comfort of luxury cruise ships is a matter of great concern. In this paper, a finite element model of a new polar exploration cruise ship is established, and the wet modes of the whole ship are calculated using the virtual mass method and compared with the principal frequencies of the excitation forces to initially verify the rationality of the design of the structural vibration characteristics of the whole ship. The admittance matrix of the vibration velocity to excitation force was calculated by a frequency response analysis, and the vibration velocities at the stern plate and main engine foundations were tested during sailing. Then, the obtained propeller and main engine excitation forces were loaded into the finite element model; the vibration velocities of each compartment were calculated and compared with the compartment vibration velocity test values. The errors were within the engineering allowable range, verifying the accuracy of the excitation forces. The propeller and main engine excitation forces were loaded separately on the finite element model to calculate the vibration velocity of each cabin, and the contribution of the two excitation sources to the vibration velocity of each cabin was analyzed. It was found that the contribution of the excitation source to the cabin response was related to the relative position between the cabin and the excitation source. When the cabin was located in the cabin adjacent to or directly above a certain excitation source, the contribution of the excitation source to the cabin response was greater. When the cabin was farther away from both excitation sources, the contribution of the propeller excitation was greater. This provides a targeted reference for the preliminary vibration assessment and later vibration control of the new polar expedition cruise ship.