2015
DOI: 10.1007/s10616-015-9914-5 View full text |Buy / Rent full text
|
|

Abstract: Medulloblastoma is a highly aggressive brain tumor and one of the leading causes of morbidity and mortality related to childhood cancer. These tumors display differential ability to metastasize and respond to treatment, which reflects their high degree of heterogeneity at the genetic and molecular levels. Such heterogeneity of medulloblastoma brings an additional challenge to the understanding of its physiopathology and impacts the development of new therapeutic strategies. This translational effort has been t… Show more

Help me understand this report

Search citation statements

Order By: Relevance
Select...
2
1
1
1
1
15
0

Year Published

2016
2016
2020
2020

Publication Types

Select...
4

Relationship

2
2

Authors

Journals

1
15
0
Order By: Relevance
“…Very recently, CD133-enriched cell population group 3 MB cells were more prone to form tumorspheres and more tumorigenic when compared to CD133-depleted cells, as demonstrated after in vitro and in vivo LDA [51]. Similar features (i.e., high proliferative activity, high colony formation efficiency, enhanced ability to generate tumorspheres enriched in CD133+ cells, as well as higher tumorigenicity in vivo) have been demonstrated in USP-13-Med cells, a new MB cell line with a profile more consistent with that of group 4 tumors, when compared to the DAOY cells [24].…”
Section: Discussionsupporting
See 1 more Smart Citation
Create an account to read the remaining citation statements from this report. You will also get access to:
  • Search over 1.2b+ citation statments to see what is being said about any topic in the research literature
  • Advanced Search to find publications that support or contrast your research
  • Citation reports and visualizations to easily see what publications are saying about each other
  • Browser extension to see Smart Citations wherever you read research
  • Dashboards to evaluate and keep track of groups of publications
  • Alerts to stay on top of citations as they happen
  • Automated reference checks to make sure you are citing reliable research in your manuscripts
  • 7 day free preview of our premium features.

Trusted by researchers and organizations around the world

Over 130,000 students researchers, and industry experts at use scite

See what students are saying

rupbmjkragerfmgwileyiopcupepmcmbcthiemesagefrontiersapsiucrarxivemeralduhksmucshluniversity-of-gavle
“…Very recently, CD133-enriched cell population group 3 MB cells were more prone to form tumorspheres and more tumorigenic when compared to CD133-depleted cells, as demonstrated after in vitro and in vivo LDA [51]. Similar features (i.e., high proliferative activity, high colony formation efficiency, enhanced ability to generate tumorspheres enriched in CD133+ cells, as well as higher tumorigenicity in vivo) have been demonstrated in USP-13-Med cells, a new MB cell line with a profile more consistent with that of group 4 tumors, when compared to the DAOY cells [24].…”
Section: Discussionsupporting
“…To develop specific CSCs-targeting therapies, studies are needed using enriched and stable CSC cell populations. Given the relatively MB low incidence, the possibility of accessing patient-derived samples is extremely limited and furthermore, few MB cell lines are available in central repositories making it more complex to study this tumor compared to others [24]. Thus, the MB research area is greatly frustrated by the recognized difficulty in culturing and obtaining high amounts of primary patient-derived cells for in vitro studies.…”
Section: Introductionmentioning
“…The PDL of parental Daoy and USP13-Med cells, under the same experimental conditions, are known [52]. …”
Section: Methodsmentioning
“…Three embryonal CNS tumor cell lines: DAOY (medulloblastoma, ATCC HTB-186), USP13-MED (medulloblastoma, inhouse established; ref. 8), and USP7-ATRT (atypical teratoid/ rhabdoid tumor, in-house established); three non-CNS tumor cell lines: MCF-7 (breast cancer, ATCC HTB-22), HCT-8 (colorectal cancer, ATCC CCL-244), and DU-145 (prostate cancer, derived from brain metastasis, ATCC HTB-81); one control human-induced pluripotent stem cell (hiPSC, C2535, in-house reprogrammed)-derived NPCs and neurons were analyzed. Detailed information regarding the generation and characterization of hiPSCs, NPCs, and neurons is provided in Supplementary Materials.…”
Section: Cell Lines and Culturesmentioning