2017
DOI: 10.1112/s0010437x17007369
|View full text |Cite
|
Sign up to set email alerts
|

Équivalence motivique des groupes algébriques semisimples

Abstract: Deux groupes semisimples sont dits motiviquement équivalents si les motifs des variétés de drapeaux généralisées associées sont isomorphes modulo tout nombre premier p. L'objet de cette note est de construire les invariants combinatoires qui caractérisent l'équivalence motivique et sont les analogues motiviques des indices de Tits apparaissant dans la classification des groupes algébriques semisimples. L'expression de ces invariants -les p-indices de Tits supérieurs-en fonction des indices classiques associés … Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
3
1
1

Citation Types

1
15
0

Year Published

2017
2017
2024
2024

Publication Types

Select...
3
1

Relationship

2
2

Authors

Journals

citations
Cited by 4 publications
(16 citation statements)
references
References 47 publications
1
15
0
Order By: Relevance
“…Proof Table shows that the Tits 2‐index only depends on whether f3false(Gfalse) is zero and the 3‐index only depends on whether g3false(Gfalse) is zero. Combine this with the main result of . □…”
Section: Tits P‐indexes Of Exceptional Groupsmentioning
confidence: 74%
See 4 more Smart Citations
“…Proof Table shows that the Tits 2‐index only depends on whether f3false(Gfalse) is zero and the 3‐index only depends on whether g3false(Gfalse) is zero. Combine this with the main result of . □…”
Section: Tits P‐indexes Of Exceptional Groupsmentioning
confidence: 74%
“…Conversely, if the two subgroups are equal, then for each extension E of k, either prefixresE/kfalse(b(G)false) is zero and both GE and GE are quasi‐split, or it is nonzero and both are anisotropic; in this case the isomorphism of the Tits p‐indexes over k clearly extends to an isomorphism over E. Applying the main result of gives the claim. □…”
Section: Tits P‐indexes Of Exceptional Groupsmentioning
confidence: 90%
See 3 more Smart Citations