2019
DOI: 10.1016/j.cor.2019.05.014
|View full text |Cite
|
Sign up to set email alerts
|

Equity portfolio management with cardinality constraints and risk parity control using multi-objective particle swarm optimization

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1
1

Citation Types

0
9
0
2

Year Published

2020
2020
2023
2023

Publication Types

Select...
4
2
1

Relationship

0
7

Authors

Journals

citations
Cited by 42 publications
(12 citation statements)
references
References 58 publications
0
9
0
2
Order By: Relevance
“…Para esta estratégia, o algoritmo genético é também responsável por atribuir o peso de cada ativo na possível soluc ¸ão com a utlizac ¸ão de representac ¸ões, mutac ¸ões e crossover específicos, [17], [19]- [23]. Considerando essas possibilidades, faz-se necessária uma extensa análise a partir de experimentos computacionais para testar a versatilidade e eficiência de cada heurística aplicada a diferentes modelos e conjuntos de dados, especialmente em momentos de alta volatilidade [8].…”
Section: Trabalhos Relacionadosunclassified
See 1 more Smart Citation
“…Para esta estratégia, o algoritmo genético é também responsável por atribuir o peso de cada ativo na possível soluc ¸ão com a utlizac ¸ão de representac ¸ões, mutac ¸ões e crossover específicos, [17], [19]- [23]. Considerando essas possibilidades, faz-se necessária uma extensa análise a partir de experimentos computacionais para testar a versatilidade e eficiência de cada heurística aplicada a diferentes modelos e conjuntos de dados, especialmente em momentos de alta volatilidade [8].…”
Section: Trabalhos Relacionadosunclassified
“…A fim de obter-se boas soluc ¸ões em tempos razoáveis, foram propostas diversas heurísticas [5]- [7]. Estas abordagens podem ser úteis em momentos de rebalanceamento de portfólio e mudanc ¸as no cenário, possibilitando ao gestor simular diversas situac ¸ões e fazer testes em tempo oportuno, de modo a ajudar em sua tomada de decisão [5], [8].…”
Section: Introduc ¸ãOunclassified
“…Mishra et al developed a MOPSO algorithm which used a self-regulating velocity strategy that was found to be highly competitive against evolutionary algorithms, namely NSGA-II and SPEA-2 [120]. Kaucic presented a novel hybridized MOPSO algorithm to solve the constrained portfolio optimization problem [93]. The hybridized algorithm used mutation to improve the exploratory capabilities of MOPSO.…”
Section: Particle Swarm Optimizationmentioning
confidence: 99%
“…Investing in these algorithms could be a potentially fruitful area of future work since initial results are promising. Furthermore, the hybridization of these algorithms have been shown to yield superior results over their individual counterparts [93], [126], [172].…”
Section: 83%mentioning
confidence: 99%
“…ese methods, usually inspired by a natural phenomenon, have been widely developed to solve different scientific problems in the recent decades: to name but a few, particle swarm optimization [28][29][30], firefly optimization algorithm [31], ant colony optimization algorithm [32][33][34][35], genetic algorithm [36][37][38][39], imperialist competitive algorithm [40][41][42], team game algorithm [43], and teacher-learning-optimization algorithm [44,45]. On the contrary, most of engineering problems, especially controller design, have more than one objective function (criterion) for optimization [46][47][48][49][50]. As a success approach, multiobjective high exploration particle swarm optimization is a recently introduced algorithm by the authors of this work to solve real-world and complicated multicriterion problems [51].…”
Section: Introductionmentioning
confidence: 99%