EBV nuclear antigen 3C (EBNA3C) is an essential transcription factor for EBV transformed lymphoblast cell line (LCL) growth. To identify EBNA3C-regulated genes in LCLs, microarrays were used to measure RNA abundances in each of three different LCLs that conditionally express EBNA3C fused to a 4-OH-Tamoxifen-dependent estrogen receptor hormone binding domain (EBNA3CHT). At least three RNAs were assayed for each EBNA3CHT LCL under nonpermissive conditions, permissive conditions, and nonpermissive conditions with wild-type EBNA3C transcomplementation. Using a two-way ANOVA model of EBNA3C levels, we identified 550 regulated genes that were at least 1.5-fold up-or down-regulated with false discovery rates < 0.01. EBNA3C-regulated genes overlapped significantly with genes regulated by EBNA2 and EBNA3A consistent with coordinated effects on cell gene transcription. Of the 550 EBNA3C-regulated genes, 106 could be placed in protein networks. A seeded Bayesian network analysis of the 80 most significant EBNA3C-regulated genes suggests that RAC1, LYN, and TNF are upstream of other EBNA3C-regulated genes. Gene set enrichment analysis found enrichment for MAP kinase signaling, cytokine-cytokine receptor interactions, JAK-STAT signaling, and cell adhesion molecules, implicating these pathways in EBNA3C effects on LCL growth or survival. EBNA3C significantly up-regulated the CXCL12 ligand and its CXCR4 receptor and increased LCL migration. CXCL12 up-regulation depended on EBNA3C's interaction with the cell transcription factor, RBPJ, which is essential for LCL growth. EBNA3C also up-regulated MYC 1.3-fold and down-regulated CDKN2A exons 2 and 3, shared by p16 and p14, 1.4-fold, with false discovery rates < 5 × 10 −4 . lymphoma | Notch