2023
DOI: 10.1016/j.aim.2023.109365
|View full text |Cite
|
Sign up to set email alerts
|

Entire solutions to 4 dimensional Ginzburg–Landau equations and codimension 2 minimal submanifolds

Marco Badran,
Manuel del Pino
Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1

Citation Types

2
8
0

Year Published

2024
2024
2024
2024

Publication Types

Select...
4

Relationship

1
3

Authors

Journals

citations
Cited by 4 publications
(10 citation statements)
references
References 36 publications
2
8
0
Order By: Relevance
“…We claim that for every normalΨL2(double-struckRn)$\Psi \in L^2(\mathbb {R}^n)$ we can find a solution to the system leftbadbreak−Δt,U0normalΦgoodbreak−ε2ΔynormalΦgoodbreak+normalΦgoodbreak+TU0normalΦgoodbreak=normalΨ+bα(y)Vα(t)lefton0.33emRnleftdouble-struckR2normalΦ(y,t)·Vα(t)dt=0leftαgoodbreak=1,2.$$\begin{equation} {\begin{cases} -\Delta _{t,U_0}\Phi -\varepsilon ^2\Delta _{y}\Phi +\Phi +T_{U_0}\Phi =\Psi +b^\alpha (y)\mathsf {V}_\alpha (t)&\text{on }\mathbb {R}^n\\[6pt] \int _{\mathbb {R}^2}\Phi (y,t)\cdot \mathsf {V}_\alpha (t)dt=0&\alpha =1,2. \end{cases}} \end{equation}$$This result has already been established in [2, Lemma 7]. We sketch the proof for completeness.…”
Section: Proofs Of Lemmas 31 51 and 52supporting
confidence: 58%
See 4 more Smart Citations
“…We claim that for every normalΨL2(double-struckRn)$\Psi \in L^2(\mathbb {R}^n)$ we can find a solution to the system leftbadbreak−Δt,U0normalΦgoodbreak−ε2ΔynormalΦgoodbreak+normalΦgoodbreak+TU0normalΦgoodbreak=normalΨ+bα(y)Vα(t)lefton0.33emRnleftdouble-struckR2normalΦ(y,t)·Vα(t)dt=0leftαgoodbreak=1,2.$$\begin{equation} {\begin{cases} -\Delta _{t,U_0}\Phi -\varepsilon ^2\Delta _{y}\Phi +\Phi +T_{U_0}\Phi =\Psi +b^\alpha (y)\mathsf {V}_\alpha (t)&\text{on }\mathbb {R}^n\\[6pt] \int _{\mathbb {R}^2}\Phi (y,t)\cdot \mathsf {V}_\alpha (t)dt=0&\alpha =1,2. \end{cases}} \end{equation}$$This result has already been established in [2, Lemma 7]. We sketch the proof for completeness.…”
Section: Proofs Of Lemmas 31 51 and 52supporting
confidence: 58%
“…Define the global approximation W$W$ to a solution of () as Wbadbreak=ζ3W1goodbreak+(1ζ3)Ψ.$$\begin{equation*} W=\zeta _3W_1+(1-\zeta _3)\bm{\Psi }. \end{equation*}$$A lengthy but straightforward calculation similar to that of [2, section 5.5] shows that S(W)badbreak=ζ3S(W1)goodbreak+(1ζ3)S(boldΨ)goodbreak+normalE,$$\begin{equation*} S(W)=\zeta _3S(W_1)+(1-\zeta _3)S(\bm{\Psi })+\mathrm{E}, \end{equation*}$$where |E|Cχfalse{0<ζ3<1false}(1+|W1|2)(|W1boldΨ|+|D(W1boldΨ)|+|A1u1|).$$\begin{equation*} |\mathrm{E}|\leqslant C\chi _{\lbrace 0&lt;\zeta _3&lt;1\rbrace }(1+|W_1|^2)(|W_1-\bm{\Psi }|+|D(W_1-\bm{\Psi })|+|\nabla ^{A_1}u_1|). \end{equation*}$$Now, by construction of Ψ$\Psi$ and the properties of the function f$f$ and a$a$…”
Section: The First Approximationmentioning
confidence: 99%
See 3 more Smart Citations