Summary
A diverse number of DNA and RNA viruses have the potential to invade the central nervous system (CNS), causing inflammation and injury to cells that have a limited capacity for repair and regeneration. While rare, viral encephalitis in humans is often fatal and survivors commonly suffer from permanent neurological sequelae including seizures. Established treatment options are extremely limited, predominantly relying on vaccines, antivirals, or supportive care. Many viral CNS infections are characterized by the presence of antiviral antibodies in the cerebral spinal fluid (CSF), indicating local maintenance of protective antibody secreting cells. However, the mechanisms maintaining these humoral responses are poorly characterized. Furthermore, while both viral and autoimmune encephalitis are associated with the recruitment of diverse B cell subsets to the CNS, their protective and pathogenic roles aside from antibody production are just beginning to be understood. This review will focus on the relevance of B cell responses to viral CNS infections, with an emphasis on the importance of intrathecal immunity and the potential contribution to autoimmunity. Specifically, it will summarize the newest data characterizing B cell activation, differentiation, migration, and localization in clinical samples as well as experimental models of acute and persistent viral encephalitis.