2017
DOI: 10.1016/j.eswa.2016.10.003
|View full text |Cite
|
Sign up to set email alerts
|

Ensemble and Fuzzy Kalman Filter for position estimation of an autonomous underwater vehicle based on dynamical system of AUV motion

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1
1

Citation Types

0
5
0
2

Year Published

2018
2018
2022
2022

Publication Types

Select...
5
3
1

Relationship

1
8

Authors

Journals

citations
Cited by 44 publications
(7 citation statements)
references
References 10 publications
0
5
0
2
Order By: Relevance
“…is division method is more in line with the cognitive structure of the general public. Due to the diverse backgrounds and purposes of users who use digital music resources, the establishment of a complete classification system can lay a solid foundation for the further promotion of digital music [15,16].…”
Section: Music Digitization Appreciationmentioning
confidence: 99%
“…is division method is more in line with the cognitive structure of the general public. Due to the diverse backgrounds and purposes of users who use digital music resources, the establishment of a complete classification system can lay a solid foundation for the further promotion of digital music [15,16].…”
Section: Music Digitization Appreciationmentioning
confidence: 99%
“…Salah satu pengembangannya berupa estimasi lintasan AUV dengan trayektori lintasan yang ditentukan. Salah satu estimasi posisi AUV adalah dengan menggunakan Kalman Filter [3] dan juga estimasi AUV dengan menggunakan perbandingan antara Fuzzy Kalman Filter dan Ensemble Kalman Filter pada lintasan tertentu [4]. Pada dasarnya metode estimasi Kalman Filter memiliki beberapa modifikasi yang menyesuaikan dengan jenis model matematika pada permasalahan yang akan diselesaikan.…”
Section: Pendahuluanunclassified
“…Salah satu metode yang dapat digunakan untuk estimasi posisi AUV adalah metode Asimilasi Data. Beberapa metode telah banyak digunakan untuk melakukan estimasi posisi AUV antara lain yaitu Kalman Filter [3], Ensemble Kalman Filter pada model sistem non-linear [6], EnKF-SR pada AUV Segorogeni ITS [7], perbandingan Fuzzy Kalman Filter dan EnKF [4]. Metode estimasi tersebut mampu memberikan hasil estimasi posisi dari AUV.…”
Section: A Auv (Autonomous Underwater Vehicle)unclassified
“…Different variations of Kalman Filter (KF) algorithms are Fuzzy Kalman Filter (FKF), Unscented Kalman Filter (UKF), Ensemble Kalman Filter (EnKF), and other modifications. EnKF is an algorithm to estimate nonlinear models [3], while FKF is an algorithm to estimate linear models with a Fuzzy state variable [4]. This paper investigates the comparison of AUV (Autonomous Underwater Vehicle) position estimation between KF, FKF, and EnKF.…”
Section: Introductionmentioning
confidence: 99%