2018
DOI: 10.1016/j.optcom.2018.01.009
|View full text |Cite
|
Sign up to set email alerts
|

Enhancing optical nonreciprocity by an atomic ensemble in two coupled cavities

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
3
1
1

Citation Types

0
4
0
1

Year Published

2019
2019
2024
2024

Publication Types

Select...
8

Relationship

3
5

Authors

Journals

citations
Cited by 10 publications
(5 citation statements)
references
References 40 publications
0
4
0
1
Order By: Relevance
“…Optical nonreciprocal devices allow the propagation of photons from one side to be superior than that from the opposite side. Due to its potential applications in quantum sensing and information process, the nonreciprocal signal transmission has been studied widely in various of physical systems, such as the opto-mechanical systems [1][2][3][4][5][6][7][8][9][10], parity-time-symmetry optical systems [11][12][13][14][15][16], cavity QED systems [17][18][19][20][21][22][23][24][25][26][27][28] and atomic systems [29][30][31][32][33][34]. On the other hand, the controllable photon transmission in quantum network composed by the waveguide and quantum node plays a central role in the design of quantum transistors [35][36][37][38][39][40], quantum routers [41,42], and frequency converters [43][44][45]…”
Section: Introductionmentioning
confidence: 99%
“…Optical nonreciprocal devices allow the propagation of photons from one side to be superior than that from the opposite side. Due to its potential applications in quantum sensing and information process, the nonreciprocal signal transmission has been studied widely in various of physical systems, such as the opto-mechanical systems [1][2][3][4][5][6][7][8][9][10], parity-time-symmetry optical systems [11][12][13][14][15][16], cavity QED systems [17][18][19][20][21][22][23][24][25][26][27][28] and atomic systems [29][30][31][32][33][34]. On the other hand, the controllable photon transmission in quantum network composed by the waveguide and quantum node plays a central role in the design of quantum transistors [35][36][37][38][39][40], quantum routers [41,42], and frequency converters [43][44][45]…”
Section: Introductionmentioning
confidence: 99%
“…The combination of synthetic magnetism and nonlinearity is a general method to show both nonreciprocal transmission and nonreciprocal photon blockade simultaneously, and could be implemented in photonic systems, microwave superconducting circuits, and optomechanical systems [55,56]. Our work can also be extended to a wide range of systems with the Kerr nonlinearity replaced by second-order nonlinearity [57], optomechanical interaction [15][16][17], and the interaction to a two-level quantum emitter [18] or two-level atomic ensemble [19].…”
Section: Discussionmentioning
confidence: 99%
“…In recent years, many works have reported the construction of optical isolators in an asymmetric nonlinear optical molecule, which consists of two coupled cavities with one of them containing nonlinear interactions, such as Kerr nonlinear interaction [13,14], optomechanical interaction [15][16][17], and the interaction to a two-level quantum emitter [18] or two-level atomic ensemble [19]. To demonstrate nonreciprocity in these isolators, the amplitude of the input field is usually pretty large, and such isolators are constrained by a dynamic reciprocity relation for the input fields with small amplitude [20].…”
Section: Introductionmentioning
confidence: 99%
“…量子科技的发展将给人类生活带来崭新的篇章, 量子计算和信息处理作为量 子科技的核心已成为当前的研究热点。其中,引领科技的关键是芯片处理技术。 基于光学非互易性的全光二极管、隔离器等新型光子器件能够隔离噪声、稳定光 信号且具有体积小、兼容性好等优点,是高性能集成芯片不可或缺的元件 [1,2] 。 因此,非互易光传输在光量子操控、信息处理以及量子模拟等量子科技中具有重 要的应用 [3][4][5] 。传统的方法一般是基于法拉第磁光效应破坏时间反演对称性。然 而,基于法拉第磁光效应的不可逆操控系统总是需要庞大的磁体,这与集成电路 技术不兼容,大大限制了实际应用性 [6] 。因此,无磁材料非互易性及不可逆光子 传输器件的研究具有重要的意义。 根据洛伦兹互易性,光子在介电常数各向同性的介质中传输是互易的。人们 试图通过打破介质介电常数时间和空间反演对称性(即,破坏洛伦兹互易性)在 硅片,半导体以及光子晶体等材料中实现了光学非互易性 [7][8][9][10][11][12][13] ;随着光腔电动力 学的快速发展, 基于时间反演对称破缺的光学非互易效应在光力系统中取得了重 要成果 [14][15][16][17][18][19] , 基于光力诱导的光学非互易性, 还可以根据不同配置的要求在环形、 球形以及回音壁等模式微腔中设计隔离器、非相干相移器等 [20][21][22] ;在手性量子光 学系统中, 基于光子发射和吸收的特征可利用原子内态的非对称耦合实现非互易 [23][24][25][26] ;近年来,基于宇称-时间(Parity-Time, PT)反演对称性使光子结构极化率 在空间上满足 ( ) ( ) zz    ,在一维光晶格中利用驻波相干耦合实现了非互易 光反射的调制 [27,28] 。随后,在"运动"的光晶格中,即形成光晶格偶极阱的两 束脉冲之间具有相对失谐,进而产生一个相对速度,形成对比度高的非互易反射 带得到了理论和实验的验证 [29,30] 。可见,非互易光传播的研究已经取得了重大 的进展。这些非互易物理机制的建立大大推动了光子器件的快速发展。 完美非互易(即,一侧的光透射或反射完全被抑制,我们也称之为单向光) 光传播能够大大提高光子器件的性能, 高性能光子器件可以放大并隔离量子系统 输出的微弱信号,避免敏感量子系统受反向散射噪声的影响,更具实际应用性。 近年来,非互易光放大以及非互易激光的理论飞速发展。在热原子系统中利用多 普勒效应实现了常温下工作的非互易光放大的调控 [31][32][33][34] 。 而非互易激光主要集中 在微型环状谐振器和硅波导 [35,36] 、耦合腔原子系综 [37] 、Josephson 环系统 [38] 、 Reservior engineering [39] 以及非厄米的 time-floquet [40] 等系统中,这些系统为高品 质非互易光子器件提供了更多的可能。特别地,实验上在超导环中…”
Section: 引言unclassified