2018
DOI: 10.1002/term.2672
|View full text |Cite
|
Sign up to set email alerts
|

Enhanced hepatic differentiation of human amniotic epithelial cells on polyethylene glycol-linked multiwalled carbon nanotube-coated hydrogels

Abstract: Polyethylene glycol-linked multiwalled carbon nanotube-coated poly-acrylamide hydrogel (CNT-PA) was customized to mimic human liver stiffness and nanostructured surface in liver cells for modulating differentiation of human amniotic epithelial cells (hAECs) into functional hepatocyte-like cells (HLCs) in vitro. This composite of CNT-PA matrix enhanced the hepatic differentiation of hAECs into HLCs with suppression of pluripotent markers and up-regulation of hepatic markers at both transcript and protein levels… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1

Citation Types

0
2
0

Year Published

2019
2019
2023
2023

Publication Types

Select...
3
2
1

Relationship

0
6

Authors

Journals

citations
Cited by 6 publications
(2 citation statements)
references
References 35 publications
0
2
0
Order By: Relevance
“…CNT-PA had the potency to induce the upregulation of hepatic markers at transcription and protein levels. Moreover, this milieu was able to yield higher uptake of indocyanine green, Alb secretion and comparable CYP3A4 enzymatic function [19].…”
Section: Hepatic Differentiation Via the Combination Of Cell Source Amentioning
confidence: 97%
See 1 more Smart Citation
“…CNT-PA had the potency to induce the upregulation of hepatic markers at transcription and protein levels. Moreover, this milieu was able to yield higher uptake of indocyanine green, Alb secretion and comparable CYP3A4 enzymatic function [19].…”
Section: Hepatic Differentiation Via the Combination Of Cell Source Amentioning
confidence: 97%
“…Besides liver tissue engineering, various nanomaterials and nanoparticles are used in in vitro hepatic differentiation of stem cells. Nanomaterials can emulate native liver ECM and nanoparticles due to their biodegradability and good biocompatibility are used to direct delivery of hepatogenic small molecules, growth factors, cytokines and proteins to stem cells [19]. 3D bioprinting system, as a sophisticated engineering methodology, has been improved to solve the issues related to conventional 2D culture technique, by providing clues essential for the dynamic of distinct cell types in the context of in vivo milieu.…”
Section: Introductionmentioning
confidence: 99%