2019
DOI: 10.3390/met9060646
|View full text |Cite
|
Sign up to set email alerts
|

Enhanced Ductility of a W-30Cu Composite by Improving Microstructure Homogeneity

Abstract: Due to its negligible solubility, it is difficult to obtain a W-30Cu composite with a homogenous microstructure. However, with a selected W skeleton, a homogeneous phase distribution was achieved for a W-30Cu composite in the present study. By detailed characterization of the mechanical performance and microstructure of the W-30Cu composite, as well as the stress distribution state under a loading condition, the effects of microstructure homogeneity on the mechanical properties and failure mechanisms are ident… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
5

Citation Types

2
10
0

Year Published

2020
2020
2023
2023

Publication Types

Select...
6
1

Relationship

0
7

Authors

Journals

citations
Cited by 12 publications
(12 citation statements)
references
References 28 publications
(27 reference statements)
2
10
0
Order By: Relevance
“…More specifically, the broad category of static overload includes more generic subjects also from the field of manufacturing-related topics, where the effect of deformation and fracture was studied as an important and undetached ingredient of the fabrication process per se (e.g., hot and cold working, machining). Therefore, the mostly "intense area" (Overload/Static) comprises studies concerning general deformation and fracture phenomena, as the result of instant loading/testing conditions [4,9,10,14,15,19] and studies related to manufacturing and production processes [6,7,12,13,16,20,22,25,26]. Testing and modeling procedures addressing the evolution of deformation and fracture during forming [7,13,26], the impact toughness, [4] and certain production process characteristics [25] are also included.…”
Section: Contributionsmentioning
confidence: 99%
See 3 more Smart Citations
“…More specifically, the broad category of static overload includes more generic subjects also from the field of manufacturing-related topics, where the effect of deformation and fracture was studied as an important and undetached ingredient of the fabrication process per se (e.g., hot and cold working, machining). Therefore, the mostly "intense area" (Overload/Static) comprises studies concerning general deformation and fracture phenomena, as the result of instant loading/testing conditions [4,9,10,14,15,19] and studies related to manufacturing and production processes [6,7,12,13,16,20,22,25,26]. Testing and modeling procedures addressing the evolution of deformation and fracture during forming [7,13,26], the impact toughness, [4] and certain production process characteristics [25] are also included.…”
Section: Contributionsmentioning
confidence: 99%
“…(i) Casting and Metal Forming [6,7,11,13,15,19,[24][25][26] (ii) Machining [12,16,20] (iii) Chemical/Petrochemical [3,17,21,23] (iv) Heat Treatment [22] (v) General Plant Machinery [1,9,18,24] b. Fatigue and Cyclic Loading [8,9,18]; c. Corrosion and Environmentally Assisted Cracking [3,5,11,21]; d. Wear and Surface Degradation [1,24,27].…”
Section: Contributionsmentioning
confidence: 99%
See 2 more Smart Citations
“…Combined (experimental, analytical, numerical model, etc.) [3,[6][7][8][12][13][14][15][16][18][19][20]22,25,26] As can be readily observed, the experimental and empirical approach is the dominant methodology of failure investigation. In addition, the emergence of numerical simulation, using finite element modeling (FEM), tends to be very popular in the prediction of material behavior and potential failure prevention.…”
Section: Contributionsmentioning
confidence: 99%