2022
DOI: 10.48550/arxiv.2205.10185
|View full text |Cite
Preprint
|
Sign up to set email alerts
|

Energy dissipation from confined states in nanoporous molecular networks

Abstract: Periodic confinement of surface electrons in atomic structures or extended nanoporous molecular networks is the archetype of a two-dimensional quantum dot (QD) superlattice. Yet, an electrical control of such an artificial lattice by external gating has never been demonstrated. Here we show the capacitive coupling between an atomic force microscope (AFM) and quantum states in highly crystalline nanoporous molecular networks on Ag(111). We characterize their local density of states (LDOS) using scanning tunneli… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 37 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?