Throughput and energy efficiency in 3-way relay channels are studied in this paper. Unlike previous contributions, we consider a circular message exchange. First, an outer bound and achievable sum rate expressions for different relaying protocols are derived for 3-way relay channels. The sum capacity is characterized for certain SNR regimes. Next, leveraging the derived achievable sum rate expressions, cooperative and competitive maximization of the energy efficiency are considered. For the cooperative case, both low-complexity and globally optimal algorithms for joint power allocation at the users and at the relay are designed so as to maximize the system global energy efficiency. For the competitive case, a game theoretic approach is taken, and it is shown that the best response dynamics is guaranteed to converge to a Nash equilibrium. A power consumption model for mmWave board-to-board communications is developed, and numerical results are provided to corroborate and provide insight on the theoretical findings.