2009
DOI: 10.1016/j.tetasy.2009.01.007
|View full text |Cite
|
Sign up to set email alerts
|

Enantiocomplementary inverting sec-alkylsulfatase activity in cyano- and thio-bacteria Synechococcus and Paracoccus spp.: selectivity enhancement by medium engineering

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1

Citation Types

0
12
0

Year Published

2011
2011
2019
2019

Publication Types

Select...
6

Relationship

1
5

Authors

Journals

citations
Cited by 8 publications
(12 citation statements)
references
References 51 publications
0
12
0
Order By: Relevance
“…Through follow-up of an observation that cyano-and thiobacteria from Synechococcus and Paracoccus species, respectively, furnished either (R)-or (S)-secondary alcohols from the corresponding racemic sulfate esters in an enantiocomplementary fashion, Kurt Faber's group at the University of Graz (Austria) found broad-spectrum inverting alkylsulfatases, for which no complement in chemistry exists (64). Medium engineering dramatically improved enantioselectivity: addition of lower alcohols or use of methyl tert-butyl ether in a biphasic system improved the E value from approximately 4 to >200.…”
Section: Novel Biocatalysts Through Finding New Reactionsmentioning
confidence: 99%
“…Through follow-up of an observation that cyano-and thiobacteria from Synechococcus and Paracoccus species, respectively, furnished either (R)-or (S)-secondary alcohols from the corresponding racemic sulfate esters in an enantiocomplementary fashion, Kurt Faber's group at the University of Graz (Austria) found broad-spectrum inverting alkylsulfatases, for which no complement in chemistry exists (64). Medium engineering dramatically improved enantioselectivity: addition of lower alcohols or use of methyl tert-butyl ether in a biphasic system improved the E value from approximately 4 to >200.…”
Section: Novel Biocatalysts Through Finding New Reactionsmentioning
confidence: 99%
“…FCC 175B 4<52(Gadler and Faber 2007b) Actinobacteria   Rhodococcus ruber DSM 44541 e A 5,8<5n.a.(Gadler and Faber 2007a)B 3,4,5,6,7,12,14,15,19 C 24–681–21(Pogorevc and Faber 2002)   Gulosibacter molinativorax DSM 13485B 4>105(Gadler and Faber 2007b)   Nocardia nova DSM 43843B 4>10(Gadler and Faber 2007b) Planctomycetes   Rhodopirellula baltica DSM 10527A 526n.a.(Wallner et al 2005a)B 3,4,5,12,14 C 2,5<5–182– > 200 Cyanobacteria   Synechococcus sp. PCC 7942B 3,4,5,12,14<5–241–3(Gadler et al 2009)C 55–104– > 200 d    Synechococcus sp. RCC 556B 3,4,5,12,14<5–10n.d./1(Gadler et al 2009) Firmicutes   Bacillus cereus A 9n.d.n.a.(Singh et al 1998)   Bacillus sphaericus FCC 098B 4<51(Gadler and Faber 2007b) Strain combination   Acinetobacter calcoaceticus + Pantoea agglomerans A 9n.d.n.a.(Abboud et al 2007)Archaea Crenarchaeota   Sulfolobus acidocaldarius DSM 639B 3,4,5,12,14,1910–435– > 200(Gadler and Faber 2007a; Wallner et al 2004)C 55–10n.d.E 2,35–102   Sulfolobus solfataricus DSM 1617B 4,1920–562–35(Wallner et al 2005b)   Sulfolobus shibatae DSM 5389B 4,1920–432–48…”
Section: Search For Sulfatase Activitymentioning
confidence: 99%
“…PCC 7942B 3,4,5,12,14<5–241–3(Gadler et al 2009)C 55–104– > 200 d    Synechococcus sp. RCC 556B 3,4,5,12,14<5–10n.d./1(Gadler et al 2009) Firmicutes   Bacillus cereus A 9n.d.n.a.(Singh et al 1998)   Bacillus sphaericus FCC 098B 4<51(Gadler and Faber 2007b) Strain combination   Acinetobacter calcoaceticus + Pantoea agglomerans A 9n.d.n.a.(Abboud et al 2007)Archaea Crenarchaeota   Sulfolobus acidocaldarius DSM 639B 3,4,5,12,14,1910–435– > 200(Gadler and Faber 2007a; Wallner et al 2004)C 55–10n.d.E 2,35–102   Sulfolobus solfataricus DSM 1617B 4,1920–562–35(Wallner et al 2005b)   Sulfolobus shibatae DSM 5389B 4,1920–432–48(Wallner et al 2005b)   Sulfolobus metallicus DSM 6482B 45–101(Wallner et al 2005b)   Sulfolobus hakoniensis DSM 7519B 45–101(Wallner et al 2005b)   Acidianus brierley DSM 1651B 45–101(Wallner et al 2005b)   Acidianus infernus DSM 3191B 4251(Wallner et al 2005b)   Acidianus ambivalens DSM 3772B 4131(Wallner et al 2005b)   Metallosphaera sedula DSM 5348B 45–101(Wallner et al 2005b)   Sulfurisphaera ohwakuensis DSM 12421B 4111(Wallner et al 2005b) n.a. not applicable, n.d. not determine...…”
Section: Search For Sulfatase Activitymentioning
confidence: 99%
“…In a subsequent set of reactions, enantioenriched compounds ent-A and B are transformed into a single product C; one of these transformations proceeds with retention and the other with inversion of configuration. [22][23][24] The follow-up chemical hydrolysis of the enantioenriched sulfate ester proceeds with retention of configuration and gives the same enantiomer of the alcohol as the one produced in the enzymatic inverting step. [21] The third approach (Figure 1 c) relies on the use of a single enantioinverting enzyme for the conversion of one of the enantiomers of substrate A into product B.…”
mentioning
confidence: 99%
“…Most recent examples of such syntheses include the use of inverting alkyl sulfatases for enantioselective sulfate ester hydrolysis, which produces an alcohol and an unreacted enantiomer of the sulfate ester, both with the same absolute configuration. [22][23][24] The follow-up chemical hydrolysis of the enantioenriched sulfate ester proceeds with retention of configuration and gives the same enantiomer of the alcohol as the one produced in the enzymatic inverting step.…”
mentioning
confidence: 99%