2021
DOI: 10.1021/acsnano.1c00804
|View full text |Cite
|
Sign up to set email alerts
|

Enabling a Stable Room-Temperature Sodium–Sulfur Battery Cathode by Building Heterostructures in Multichannel Carbon Fibers

Abstract: Room-temperature sodium−sulfur (RT Na−S) batteries are widely considered as one of the alternative energystorage systems with low cost and high energy density. However, the both poor cycle stability and capacity are two critical issues arising from low conversion kinetics and sodium polysulfides (NaPSs) dissolution for sulfur cathodes during the charge/discharge process. Herein, we report a highly stable RT Na−S battery cathode via building heterostructures in multichannel carbon fibers. The TiN-TiO 2 @MCCFs, … Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1

Citation Types

0
90
0

Year Published

2021
2021
2023
2023

Publication Types

Select...
7

Relationship

0
7

Authors

Journals

citations
Cited by 85 publications
(90 citation statements)
references
References 59 publications
0
90
0
Order By: Relevance
“…Furthermore, Zheng et al built a multichannel carbon fibers host with the highly electrocatalytic activity of TiN and powerful chemisorption of TiO 2 to stabilize S (S/TiN-TiO 2 @MCCFs) (Figure 6d), in which TiO 2 could powerfully trap Na-polysulfides and speedily transport them to TiN surface for electrocatalytic deposition via the TiN-TiO 2 interface (Figure 6e). [32] therefore, this cathode with TiN-TiO 2 heterostructures could effectively improve the trapping ability and conversion rate of Na-polysulfides. Even When cycled at a high rate of 5 A g À 1 , the battery still shows a capacity of 257.1 mAh g À 1 after 1000 cycles.…”
Section: Other Metal Compound Electrocatalystsmentioning
confidence: 94%
See 3 more Smart Citations
“…Furthermore, Zheng et al built a multichannel carbon fibers host with the highly electrocatalytic activity of TiN and powerful chemisorption of TiO 2 to stabilize S (S/TiN-TiO 2 @MCCFs) (Figure 6d), in which TiO 2 could powerfully trap Na-polysulfides and speedily transport them to TiN surface for electrocatalytic deposition via the TiN-TiO 2 interface (Figure 6e). [32] therefore, this cathode with TiN-TiO 2 heterostructures could effectively improve the trapping ability and conversion rate of Na-polysulfides. Even When cycled at a high rate of 5 A g À 1 , the battery still shows a capacity of 257.1 mAh g À 1 after 1000 cycles.…”
Section: Other Metal Compound Electrocatalystsmentioning
confidence: 94%
“…Year/Ref Single metal electrocatalysts 80 wt % S@Co/C/rGO 10 wt % CB 10 wt % PVDF Co 37.5 % PFSA-Na in DMF and 1 M NaClO 4 in EC/DEC 0.5 C, 484.9-226 (1000) [18] Co@NPCNFs/S Co 38 w% 1 M NaClO 4 in EC/DEC 0.1 C, 905.6-843 (100) [19] CNF-L@Co/S Co 45 % 1 M NaClO 4 in EC/DEC 0.1 C, 1201-~700 (180) [20] S@Ni-NCFs Ni 36 % 1 M NaClO 4 in TEGDME 1 C, 431-233 (270) [21] 70 wt % CN/Au/S) 20 wt % super-P 10 wt % CMC Au 56.5 wt % 1 M NaClO 4 in PC/FEC 0.1 A g À 1 , 1967-701 (110) [22] Metal-based compound electrocatalysts 70 wt % NiS 2 @NPCTs/S 20 wt % CB 10 wt % CMC NiS 2 56 % 1 M NaClO 4 in EC/PC/FEC 1 A g À 1 , 960-401 (750) [23] 70 wt % CoNC@S 20 wt % TIMCAL 10 wt % CMC CoS -1 M NaFSI in DEC/BTFE 0.08 A g À 1 , 1095-500 (150) [24] 70 wt % CoS 2 /NC/S-3 15 wt % AB 15 wt % CMC CoS 2 50.7 wt % 1 M NaSO 3 CF 3 in DOL/DME 0.1 A g À 1 , 944-488 (100) [25] 70 wt % FeS 2 @NCMS/S 20 wt % CB 10 wt % CMC FeS 2 65.5 wt % 1 M NaClO 4 in PC/EC/FEC 0.1 A g À 1 , 1471-524 (300) [26] 80 wt % S/MoS 2 /NCS 10 wt % super-P 10 wt % CMC MoS 2 43.8 wt % S and Na 2 S 6 in DME 0.5 A g À 1 , 1397.4-590.6 (200) [27] 75 wt % MoO 3 @PCNT/S 15 wt % AB 10 wt % CMC MoO 3 50 wt % 1 M NaClO 4 in EC/PC 0.5 A g À 1 , 465-208 (1000) [28] 80 wt % rGO/VO 2 /S 10 wt % CB 10 wt % PVDF VO 2 40 wt % 1 M NaClO 4 in TEGDME 0.2 C, 876.4-400 (200) [29] 70 wt % S@CoP-Co/ NCNHC 20 wt % CB 10 wt % CMC CoP 53 wt % 1 M NaClO 4 in PC/EC/FEC 0.1 A g À 1 , 1101-592 (220) [30] VC-CNFs@S VC 42 wt % 1 M of NaPF 6 in DME/DOL 0.5 C, ~394-379 [31] S/TiN-TiO 2 @MCCFs TiN ~57 % 1 M NaClO 4 in EC/PC/FEC 0.1 A g À 1 , 1308.2-640.4 (100) [32] 85 wt % S@CB@AlOOH 15 wt % sodium-alginate AlOOH 44.3 wt % 1 M NaClO 4 and 0.2 M NaNO 3 in TEGDME 0.2 C, 668-554.4 (50) [33] Multifunctional hybrid electrocatalysts 80 wt % S@Ni/Co-C-12 10 wt % CB 10 wt % PVDF Ni and Co 41.4 % 1 M NaClO 4 in TEGDME 0.5 C, 1229.3-793.8 (200) [34] 80 wt % ZCS@S 10 wt % CB 10 wt % CMC ZnS and CoS 2 57 wt % 1 M NaClO 4 in DEC/EC/FEC 0.2 A g À 1 , ~1950-570 (1000) [35] 80 wt % Co 1 -ZnS/C@S 10 wt % CB 10 wt % CMC Co 1 and ZnS 65 wt % 1 M NaClO 4 in DEC/EC/FEC 0.1 A g À 1 , ~1650-640 (500) [36] 70 wt % FCNT@Co 3 C-Co/S 20 wt % AB 10 wt % CMC FCNT and Co 3 C-Co ~77 wt % 1 M NaClO 4 in EC/DEC 0.5 C, ~910-~800 (100) [37] [a] rGO: reduced graphene oxide, CB: carbon black, AB: acetylene black, PVDF: polyvinylidene fluoride, NPCNFs: N-doped porous carbon nanofibers, CNF-L: "branch-leaf"-structural carbon nanofiber, NCFs: N-doped carbon fibers, CN: N-doped…”
Section: Catalytic Effects In Cathode Materials For Rt-na/s Batteriesmentioning
confidence: 99%
See 2 more Smart Citations
“…In addition, as shown in Figure 9e, Zheng and coworkers [ 44 ] reported the unique TiN–TiO 2 heterostructures with impressive adsorption–diffusion–catalysis effects in situ wrapped in the multichannel porous carbon matrix as sulfur host for RT Na–S batteries (TiN–TiO 2 @MCCFs). Clear lattice interface between TiN and TiO 2 is clearly visible in the HRTEM images.…”
Section: Polar Materials Modified Carbon Matrix With Adsorption–catalysis Effectsmentioning
confidence: 99%