2023
DOI: 10.3389/fmats.2022.1060744
|View full text |Cite
|
Sign up to set email alerts
|

Emulating quantum dynamics with neural networks via knowledge distillation

Abstract: We introduce an efficient training framework for constructing machine learning-based emulators and demonstrate its capability by training an artificial neural network to predict the time evolution of quantum wave packets propagating through a potential landscape. This approach is based on the idea of knowledge distillation and uses elements of curriculum learning. It works by constructing a set of simple, but rich-in-physics training examples (a curriculum). These examples are used by the emulator to learn the… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Year Published

2024
2024
2024
2024

Publication Types

Select...
2

Relationship

0
2

Authors

Journals

citations
Cited by 2 publications
references
References 39 publications
0
0
0
Order By: Relevance