BackgroundWithin the GABAA-receptor field, two important questions are what molecular mechanisms underlie benzodiazepine tolerance, and whether tolerance can be ascribed to certain GABAA-receptor subtypes.MethodsWe investigated tolerance to acute anxiolytic, hypothermic and sedative effects of diazepam in mice exposed for 28-days to non-selective/selective GABAA-receptor positive allosteric modulators: diazepam (non-selective), bretazenil (partial non-selective), zolpidem (α1 selective) and TPA023 (α2/3 selective). In-vivo binding studies with [3H]flumazenil confirmed compounds occupied CNS GABAA receptors.ResultsChronic diazepam treatment resulted in tolerance to diazepam's acute anxiolytic, hypothermic and sedative effects. In mice treated chronically with bretazenil, tolerance to diazepam's anxiolytic and hypothermic, but not sedative, effects was seen. Chronic zolpidem treatment resulted in tolerance to diazepam's hypothermic effect, but partial anxiolytic tolerance and no sedative tolerance. Chronic TPA023 treatment did not result in tolerance to diazepam's hypothermic, anxiolytic or sedative effects.ConclusionsOur data indicate that: (i) GABAA-α2/α3 subtype selective drugs might not induce tolerance; (ii) in rodents quantitative and temporal variations in tolerance development occur dependent on the endpoint assessed, consistent with clinical experience with benzodiazepines (e.g., differential tolerance to antiepileptic and anxiolytic actions); (iii) tolerance to diazepam's sedative actions needs concomitant activation of GABAA-α1/GABAA-α5 receptors. Regarding mechanism, in-situ hybridization studies indicated no gross changes in expression levels of GABAA α1, α2 or α5 subunit mRNA in hippocampus or cortex. Since selective chronic activation of either GABAA α2, or α3 receptors does not engender tolerance development, subtype-selective GABAA drugs might constitute a promising class of novel drugs.