Abstract:A commutative ring R is J-stable provided that R/aR has stable range 1 for all a ∈ J(R). A commutative ring R in which every finitely generated ideal is principal is called a Bézout ring. A ring R is an elementary divisor ring provided that every matrix over R admits a diagonal reduction. We prove that a J-stable ring is a Bézout ring if and only if it is an elementary divisor ring. Further, we prove that every J-stable ring is strongly completable. Various types of J-stable rings are provided. Many known resu… Show more
Set email alert for when this publication receives citations?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.