2017 IEEE Biomedical Circuits and Systems Conference (BioCAS) 2017
DOI: 10.1109/biocas.2017.8325191
|View full text |Cite
|
Sign up to set email alerts
|

Electronics for a safe direct current stimulator

Abstract: Commercially available neuroprostheses, while successful and effective, are limited in their functionality by their reliance on pulsatile stimulation. Direct current (DC) has been shown to have great potential for the purposes of neuromodulation; however, direct current cannot be applied directly to neurons due to the charge injection thresholds of electrodes. We are developing a Safe Direct Current Stimulator (SDCS) that applies ionic direct current (iDC) without inducing toxic electrochemical reactions. The … Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1

Citation Types

0
3
0

Year Published

2019
2019
2023
2023

Publication Types

Select...
2
2
1

Relationship

0
5

Authors

Journals

citations
Cited by 5 publications
(3 citation statements)
references
References 10 publications
0
3
0
Order By: Relevance
“…In contrast, another approach has been to develop a method by which ionic current can be delivered safely indefinitely (Fridman and Della Santina, 2013a,b; Ou and Fridman, 2017). The principle behind Safe Direct Current Stimulation (SDCS) is to rectify short, biphasic electronic pulses delivered to metal electrodes in the device into direct ionic current at the output of the device.…”
Section: Enabling Technologymentioning
confidence: 99%
See 2 more Smart Citations
“…In contrast, another approach has been to develop a method by which ionic current can be delivered safely indefinitely (Fridman and Della Santina, 2013a,b; Ou and Fridman, 2017). The principle behind Safe Direct Current Stimulation (SDCS) is to rectify short, biphasic electronic pulses delivered to metal electrodes in the device into direct ionic current at the output of the device.…”
Section: Enabling Technologymentioning
confidence: 99%
“…During state transitions, the valves would be closed or open simultaneously for a short duration at the same time, causing a short or an open circuit and resulting in interruptions in current flow at the output (Fridman and Della Santina, 2013a). The first solution to the problem of current flow interruption used two SDCS systems that worked in tandem shown in Figure 2B (Fridman and Della Santina, 2013b; Ou and Fridman, 2017). The system on the left would deliver the current to the tissue, while the system on the right would switch its valve states; the control of the current flow would switch electronically from the system on the left to the one on the right and the right system would change valve states, and then the process would repeat.…”
Section: Enabling Technologymentioning
confidence: 99%
See 1 more Smart Citation