Currently, the search for new drugs with greater therapeutic potential and less side effects has been fostered by the advancement of the use of molecular modeling drugs, which in addition to supporting the full characterization of the molecule, allow simple algorithms to predict pharmacokinetic. In this context the present work aimed to perform the electronic / structural characterization, to evaluate the pharmacokinetic properties and to perform a virtual screening of the possible biological targets of Sophoraflavonone G, a promising flavonone, which presents several pharmacological properties. Sophoraflavanone G was geometrically optimized by semi-empirical quantum calculations, plot the MESP, identifying the nucleophilic sites. Using the boundary orbitals, it was possible to identify a greater tendency for electron donation in relation to Naringeni, with lower ionization potential, higher hardness and less softness. With respect to pharmacokinetics Sophoraflavonone G confirmed the safety of the compound for oral administration with good skin permeability, which allows applications in topical formulations. Presents indications for gastro intestinal absorption, as for possible interactions with biological targets, interaction with the estrogen receptor alpha, sodium / glucose co-transporter 2, beta-secretase 1, cyclooxygenase-1.The data obtained from an early stage for a comparative analysis between its analogues and fundamental for future studies of relationships between the three-dimensional structure of Sophoraflavanone G and its biological activities.