2019 7th International Conference on Control, Mechatronics and Automation (ICCMA) 2019
DOI: 10.1109/iccma46720.2019.8988695
|View full text |Cite
|
Sign up to set email alerts
|

Electronic Differential Optimization for Electric Vehicle Full Model for In-Wheel Permanent Magnet Brushless DC Motors

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1

Citation Types

0
2
0
1

Year Published

2021
2021
2023
2023

Publication Types

Select...
4
2

Relationship

0
6

Authors

Journals

citations
Cited by 7 publications
(3 citation statements)
references
References 7 publications
0
2
0
1
Order By: Relevance
“…If the value of i d is set to 0, then equation ( 3) could be simplified as, T e = 1.5P n ψ f i q (5) where is proportional to the magnitude of . As long as appropriate is adjusted, the target could be obtained.…”
Section: B Vector Control Strategy Of Permanent Magnet Synchronous Motormentioning
confidence: 99%
See 1 more Smart Citation
“…If the value of i d is set to 0, then equation ( 3) could be simplified as, T e = 1.5P n ψ f i q (5) where is proportional to the magnitude of . As long as appropriate is adjusted, the target could be obtained.…”
Section: B Vector Control Strategy Of Permanent Magnet Synchronous Motormentioning
confidence: 99%
“…regarded reducing wheel sliding rate and avoiding motor torque oversaturation as constraints, proposing an adaptive electronic differential strategy based on equal torque distribution. Although the wheel sliding rate was reduced, a more reasonable driving torque distribution method was not adopted, thus the vehicle lateral stability is poor [5,6] . Daya et al used the Ackermann geometry to determine the target speed of each wheel, using closed-loop control to realize the torque distribution of the driving wheels, then, adjusted the speed to achieve the differential effect.…”
Section: Introductionmentioning
confidence: 99%
“…En (Khan-Ngern et al, 2018) se presenta un diferencial electrónico, con un controlador en lazo abierto, que depende sólo de la posición del volante del vehículo, medido con un potenciómetro, debido a que el controlador no tiene realimentación su implementación es fácil, pero carece de las ventajas de un controlador en lazo cerrado. En (Al-Fiky et al, 2019), se presenta un controlador para un diferencial electrónico, basado en un PID, que utiliza la medición del ángulo del volante del vehículo, aunque el controlador logra estabilizar el sistema en lazo cerrado está basado en una técnica lineal, ajustando los parámetros del controlador en un solo punto de operación, por lo que no se podría garantizar estabilidad en la región de operación no lineal del sistema. Se han utilizado técnicas de control inteligente, por ejemplo, en (Setiawan et al, 2019), se presenta un controlador para un diferencial electrónico, basado en lógica difusa; aunque este tipo de controladores pueden considerar una región de operación no lineal, pueden requerir un alto costo computacional.…”
Section: Introductionunclassified