2015
DOI: 10.1152/physrev.00006.2014
|View full text |Cite
|
Sign up to set email alerts
|

Electronic Connection Between the Quinone and CytochromecRedox Pools and Its Role in Regulation of Mitochondrial Electron Transport and Redox Signaling

Abstract: Physiol Rev 95: 219 -243, 2015; doi:10.1152/physrev.00006.2014.-Mitochondrial respiration, an important bioenergetic process, relies on operation of four membranous enzymatic complexes linked functionally by mobile, freely diffusible elements: quinone molecules in the membrane and water-soluble cytochromes c in the intermembrane space. One of the mitochondrial complexes, complex III (cytochrome bc 1 or ubiquinol: cytochrome c oxidoreductase), provides an electronic connection between these two diffusible redox… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1

Citation Types

4
141
0
6

Year Published

2016
2016
2022
2022

Publication Types

Select...
7
1

Relationship

2
6

Authors

Journals

citations
Cited by 133 publications
(151 citation statements)
references
References 286 publications
(376 reference statements)
4
141
0
6
Order By: Relevance
“…1A) generate a proton-motive force (pmf) that powers cellular metabolism by using the Gibbs free energy difference (ΔG) between hydroquinone (QH 2 ) derivatives (Fig. 1B) and oxidized soluble electron transfer proteins (e.g., cytochrome c or plastocyanin) (1,2). To increase the efficiency of this process, which is critical for the yield of the generated pmf, one part of the enzyme recirculates electrons to the quinone pool in the membrane (Q pool), whereas the second part steers the electrons to the cytochrome c pool, powering the electron recirculation (Fig.…”
mentioning
confidence: 99%
“…1A) generate a proton-motive force (pmf) that powers cellular metabolism by using the Gibbs free energy difference (ΔG) between hydroquinone (QH 2 ) derivatives (Fig. 1B) and oxidized soluble electron transfer proteins (e.g., cytochrome c or plastocyanin) (1,2). To increase the efficiency of this process, which is critical for the yield of the generated pmf, one part of the enzyme recirculates electrons to the quinone pool in the membrane (Q pool), whereas the second part steers the electrons to the cytochrome c pool, powering the electron recirculation (Fig.…”
mentioning
confidence: 99%
“…4 Les mitochondries intermyofibrillaires sont localisées entre les myofibrilles. 5 Les mitochondries sous-sarcolemmales sont localisées juste sous la membrane des cellules musculaires. mécanismes impliqués restent, à l'heure actuelle, encore incompris, des études récentes suggèrent qu'une réduction du potentiel mitophagique et qu'une altération de la dynamique et de la morphologie des mitochondries pourraient être impliquées dans cette accumulation de dysfonctions au cours du vieillissement.…”
Section: Discussionunclassified
“…Un des changements les plus délétères et les plus caractéristiques, associés au vieillissement normal, se de NADH,H + qui pourrait, au travers de l'augmentation d'activité du complexe I qu'elle peut induire, augmenter le taux de réduction des pools de quinones et de cytochrome C, et, ainsi, favoriser la production d'EAO par la chaîne respiratoire [5]. L'entrée de calcium dans la mitochondrie dépend principalement du canal à anions dépendant du voltage (VDAC), qui permet aux ions de traverser la membrane externe mitochondriale, et de l'uniport calcique qui favorise la traversée de la membrane interne du calcium [6].…”
Section: Le Vieillissement Musculaireunclassified
“…During the occurrence of the electron and proton transfer reactions in the METC, Coenzyme Q 10 turns between fully oxidized form-quinone and fully reduced form-quinol (or ubiquinol). Next to this crucial role in the cell energy creation, there are lots of studies dedicated to many other functions of Coenzyme Q 10 in the living cells [4,5]. It is well known that Coenzyme Q 10 occurs in all subcellular membranes, while having a very important role in functioning of many membrane oxido-reductase systems such as mitochondria, Golgi apparatus, lysosomes, and plasmalemma [1,5].…”
Section: Introductionmentioning
confidence: 99%
“…Next to this crucial role in the cell energy creation, there are lots of studies dedicated to many other functions of Coenzyme Q 10 in the living cells [4,5]. It is well known that Coenzyme Q 10 occurs in all subcellular membranes, while having a very important role in functioning of many membrane oxido-reductase systems such as mitochondria, Golgi apparatus, lysosomes, and plasmalemma [1,5]. In these systems, Coenzyme Q 10 , via its redox chemistry, influences many pathways in the cells, ranging from pro-oxidant to antioxidant activities (free-radical generation and scavenging of free radicals) and modulating cellular pathology [6][7][8].…”
Section: Introductionmentioning
confidence: 99%