2019
DOI: 10.1016/j.powtec.2019.05.007
|View full text |Cite
|
Sign up to set email alerts
|

Electrode-coated alumina separators for lithium-ion batteries - effect of particle size and distribution of alumina powders

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1
1
1

Citation Types

0
10
0
1

Year Published

2020
2020
2024
2024

Publication Types

Select...
6
1

Relationship

0
7

Authors

Journals

citations
Cited by 16 publications
(11 citation statements)
references
References 22 publications
0
10
0
1
Order By: Relevance
“…Among the battery components, battery separators are primarily responsible for preventing and managing battery shorting and thermal runaway. Thermally responsive separator are engineered to collapse or expand in response to high temperatures, blocking ion‐flow to effectively shut off the cell 20,21. With the help of a third electrode, separators are able to detect a penetrating dendrite 22.…”
Section: Figurementioning
confidence: 99%
See 1 more Smart Citation
“…Among the battery components, battery separators are primarily responsible for preventing and managing battery shorting and thermal runaway. Thermally responsive separator are engineered to collapse or expand in response to high temperatures, blocking ion‐flow to effectively shut off the cell 20,21. With the help of a third electrode, separators are able to detect a penetrating dendrite 22.…”
Section: Figurementioning
confidence: 99%
“…Thermally responsive separator are engineered to collapse or expand in response to high temperatures, blocking ion-flow to effectively shut off the cell. [20,21] With the help of a third electrode, separators are able to detect a penetrating dendrite. [22] Alternatively, mechanically robust separators can in principle block internal shorting due to lithium dendrite penetration.…”
mentioning
confidence: 99%
“…This large particle size distribution tends to maximize particle packing density. Where the large particles can form a rigid structure, and the fine active particles form the matrix and bind the large particles after sintering, which is very suitable for certain applications such as refractory materials [17] and electrode-coated for lithium-ion batteries [38]. It is worth noting that some applications like catalysis, abrasives and nanocomposites need disperse fine α-alumina particles with narrow particle size distribution [37].…”
Section: Microstructural and Morphological Characteristics Of The Recovered Aluminamentioning
confidence: 99%
“…欧盟 Battery 2030 +等。 高能量和功率密度、高循环稳定性的锂离子电池不仅取决于优异的活性物质、电解液等材料, 也与电池的制造工艺及装备息息相关 [2] 。特别是动力和储能应用需要大量的单体电池串并联成组, 需要高精度保障单体电池的一致性,避免"短板效应"带来的模组容量损失和循环寿命衰减,保障电 池的安全性。对于电池模块,每个单体电池承受相同电流,其电压是所有单体电池的总和,因此电 池模块容量、电化学性能受限于模块内最弱的单体电池。孙逢春院士指出"电池性能不一致性使动 力电池组在电动汽车上使用时,性能指标往往达不到单电池原有水平,使用寿命缩短数倍甚至十几 倍" [3] 。 因此,制造阶段引起的单体电池之间微小差异可能会导致电池组的整体容量、电化学性能发生 重大变化。如新能源汽车、储能等需求急剧增长,全电动汽车动力电池由成百上千个锂离子单体电 池组成,容量比手机高约 5000 倍,复合年增长率达到 20%以上。锂离子动力电池对制造一致性要 求苛刻,通过极高的制造过程管控来满足特定容差,以保证电池的容量、内阻、寿命和安全性。 2021 年,北京汽车股份有限公司因为电池一致性问题,存在引发起火风险的严重安全隐患,一次 召回 31963 辆电动汽车。锂离子电池在作为卫星的空间电源应用时,承受冲击、振动、高低温等恶 劣服役环境,使用寿命需满足低轨 5~10 年、高轨 15~10 年的要求 [4] ,需要大量的冗余设计来保证 电池组的使用寿命。锂离子电池制造过程复杂,可以分为前段的极片制造、中段的电芯装配和后段 的化成分容检测 [5] 。极片制造是锂离子电池最核心的制造过程,包括制浆、涂布和辊压三大关键工 序,通过将正负极活性物质、导电剂、黏结剂等制成浆料,涂覆在铜/铝箔上,干燥、辊压压实后 得到正负电极,构成电化学反应载体和整个电池的核心。电极制造过程影响着正负电极的孔隙率、 厚度、密度,以及导电网络、黏结网络等微结构,很大程度上决定着锂离子电池性能 [6] 离子电导率等,均会显著影响其黏度 [8,9] 、分散状态 [10,11] 与电化学特性 [12,13] 。如 Ouyang 等人 [14] 研究了固含量对 LiNi 0.8 Co 0.15 Al 0.05 O 2 正极浆料流变特性和微观结构的影响,结果表明长链结构的 PVDF 分子会吸附在固体颗粒表面,其桥接功能会随着固含量而变化, 当低于最佳固含量(<63.9%) 时,颗粒间形成弱絮凝网络结构,颗粒易发生沉降;当超过最佳固含量时(>66.3%),浆料会产 生过大的屈服应力,固体颗粒间不发生直接接触,分散均匀性降低(图 2a)。Kwon 等人 [15] 研究发 现,与球状石墨(比表面积为 0.95 m 2 /g)相比,片状石墨(比表面积为 16 m 2 /g)能提供更大的表 面积与 LiCoO 2 颗粒接触,电极表现出更优异的循环伏安特性,同时在浆料中具有更好的分散性 (图 2b)。此外,采用小粒径乃至纳米级尺寸的活性颗粒或碳纳米管、石墨烯等作为导电剂,可 显著提升锂离子电池的能量密度、倍率等性能 [16,17] 。但小粒径颗粒会大幅增加浆料黏度,需要更 强的剪切作用实现均匀分散,同时具有高表面积与表面能的纳米颗粒还存在促进电解质分解、团聚 严重与低堆积密度的风险,导致初始库伦效率低、接触电阻大以及电极体积能量密度差 [18,19] 。因 此,设计组分比例、粒径适中的材料体系是获得流变特性优异、稳定均匀电极浆料的前提。 A c c e p t e d https://engine.scichina.com/doi/10.1360/TB-2021-1069 图 2 制浆过程中的电极微结构演化. (a)不同固含量下浆料中颗粒与 PVDF 相互作用机制 [14] ;(b)含片状与 球状炭黑的 LiCoO 2 电极粉末球磨过程 [15] ;(c)不同混料顺序制备的电极干燥前后微结构变化 [27] ;(d)颗 粒形态、导电面面积比与混合参数之间的关系 [28] Figure 2 Electrode microstructure evolution during slurry mixing process.…”
Section: 定科技专项,包括我国《新能源汽车产业发展规划(2021-2035 年)》,美国能源部的 Battery 500,unclassified