Articular cartilage is a highly specialized tissue found in diarthrodial joints, which is crucial for healthy articular motion. Despite its importance, articular cartilage has limited regenerative capacities, and the degeneration of this tissue is a leading cause of disability worldwide, with hundreds of millions of people affected. As current treatment options for cartilage degeneration remain ineffective, tissue engineering has emerged as an exciting approach to create cartilage substitutes. In particular, hydrogels seem to be suitable candidates for this purpose due to their biocompatibility and high customizability, being able to be tailored to fit the biophysical properties of native cartilage. Furthermore, these hydrogel matrices can be combined with conductive materials in order to simulate the natural electrochemical properties of articular cartilage. In this review, we highlight the most common conductive materials combined with hydrogels and their diverse applications, and then present the current state of research on the development of electrically conductive hydrogels for cartilage tissue engineering. Finally, the main challenges and future perspectives for the application of electrically conductive hydrogels on articular cartilage repair strategies are also discussed.