2024
DOI: 10.3390/e26050413
|View full text |Cite
|
Sign up to set email alerts
|

Efficient Quantum Private Comparison Based on GHZ States

Min Hou,
Yue Wu,
Shibin Zhang

Abstract: Quantum private comparison (QPC) is a fundamental cryptographic protocol that allows two parties to compare the equality of their private inputs without revealing any information about those inputs to each other. In recent years, QPC protocols utilizing various quantum resources have been proposed. However, these QPC protocols have lower utilization of quantum resources and qubit efficiency. To address this issue, we propose an efficient QPC protocol based on GHZ states, which leverages the unique properties o… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1

Citation Types

0
0
0

Year Published

2024
2024
2024
2024

Publication Types

Select...
2

Relationship

1
1

Authors

Journals

citations
Cited by 2 publications
(1 citation statement)
references
References 40 publications
0
0
0
Order By: Relevance
“…In this protocol, secrets are divided into multiple groups, which improves efficiency by eliminating the need to compare all groups of information. Since then, different QPC protocols have been continuously proposed, aiming to determine the relationship between private and these studies mainly utilize various quantum states, including single photons [ 16 , 17 , 18 , 19 , 20 , 21 , 22 , 23 ], Bell states [ 24 , 25 , 26 , 27 , 28 , 29 , 30 , 31 , 32 , 33 ], entangled states [ 34 , 35 , 36 , 37 , 38 , 39 ], cluster states [ 40 , 41 , 42 , 43 , 44 , 45 ] and d-level quantum states [ 46 , 47 , 48 , 49 ] as quantum resources. They also employ different quantum technologies, such as entanglement swapping and unitary operations, as well as determine whether to distribute keys for sharing secret keys to accomplish the comparison.…”
Section: Introductionmentioning
confidence: 99%
“…In this protocol, secrets are divided into multiple groups, which improves efficiency by eliminating the need to compare all groups of information. Since then, different QPC protocols have been continuously proposed, aiming to determine the relationship between private and these studies mainly utilize various quantum states, including single photons [ 16 , 17 , 18 , 19 , 20 , 21 , 22 , 23 ], Bell states [ 24 , 25 , 26 , 27 , 28 , 29 , 30 , 31 , 32 , 33 ], entangled states [ 34 , 35 , 36 , 37 , 38 , 39 ], cluster states [ 40 , 41 , 42 , 43 , 44 , 45 ] and d-level quantum states [ 46 , 47 , 48 , 49 ] as quantum resources. They also employ different quantum technologies, such as entanglement swapping and unitary operations, as well as determine whether to distribute keys for sharing secret keys to accomplish the comparison.…”
Section: Introductionmentioning
confidence: 99%