A simple, effective and high-precision boundary meshfree method called virtual boundary meshfree Galerkin method (VBMGM) is used to tackle 2D anisotropic heat conduction problems with complex boundaries. Temperature and heat flux are expressed by virtual boundary element method. The virtual source function is constructed through the utilization of radial basis function interpolation. Calculation model diagram and discrete model diagram of real boundaries, and schematic diagram of VBMGM are demonstrated. Using Galekin method and considering boundary conditions, the integral equation and the discrete formula of VBMGM are given in detail. The benefits of the Galerkin, meshfree, and boundary element methods are all presented in VBMGM. Seven numerical examples of general anisotropic heat conduction problems (including three numerical examples with complex boundaries and four numerical examples with mixed boundary conditions) are computed and contrasted with precise solutions and different numerical methods. The computation time of each example is given. The number of degrees of freedom used in many examples is half or less than that of the numerical method being compared. The suggested method has been demonstrated to be effective and high-precision for solving the 2D anisotropic heat conduction problems with complex boundaries.