2022
DOI: 10.3390/nu14030710
|View full text |Cite
|
Sign up to set email alerts
|

Effects of Thiamin Restriction on Exercise-Associated Glycogen Metabolism and AMPK Activation Level in Skeletal Muscle

Abstract: This study aimed to investigate the direct influence of a decrease in the cellular thiamin level, before the onset of anorexia (one of the symptoms of thiamin deficiency) on glycogen metabolism and the AMP-activated protein kinase (AMPK) activation levels in skeletal muscle at rest and in response to exercise. Male Wistar rats were classified as the control diet (CON) group or the thiamin-deficient diet (TD) group and consumed the assigned diets for 1 week. Skeletal muscles were taken from the rats at rest, th… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1

Citation Types

0
1
0

Year Published

2023
2023
2023
2023

Publication Types

Select...
2

Relationship

0
2

Authors

Journals

citations
Cited by 2 publications
(1 citation statement)
references
References 45 publications
0
1
0
Order By: Relevance
“…Among other B vitamins, vitamin B6, folic acid, and vitamin B12 all contribute to the metabolism of homocysteine and are involved in the metabolism of proteins and amino acids, which, in turn, play a role in important pathways used during physical activity 33 . Among them, folic acid and vitamin B12 are also key nutrients for damaged cell and tissue repair as coenzymes for deoxyribonucleic acid (DNA) synthesis, erythrocyte synthesis, amino acid metabolism, and the decomposition of odd fatty acid chains, respectively 34 .…”
Section: Discussionmentioning
confidence: 99%
“…Among other B vitamins, vitamin B6, folic acid, and vitamin B12 all contribute to the metabolism of homocysteine and are involved in the metabolism of proteins and amino acids, which, in turn, play a role in important pathways used during physical activity 33 . Among them, folic acid and vitamin B12 are also key nutrients for damaged cell and tissue repair as coenzymes for deoxyribonucleic acid (DNA) synthesis, erythrocyte synthesis, amino acid metabolism, and the decomposition of odd fatty acid chains, respectively 34 .…”
Section: Discussionmentioning
confidence: 99%