2022
DOI: 10.3389/fphys.2022.1056233
|View full text |Cite
|
Sign up to set email alerts
|

Effects of short-chain fatty acids on intestinal function in an enteroid model of hypoxia

Abstract: The healthy GI tract is physiologically hypoxic, but this may be perturbed by certain acute and chronic stressors that reduce oxygen availability systemically. Short-chain fatty acids have been shown to have beneficial effects on intestinal barrier function and inflammation. Therefore, our objective was to see whether short-chain fatty acids (SCFA) would improve GI barrier function, reduce production of pro-inflammatory cytokines, and increase the expression of genes regulating GI barrier function in enteroids… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1

Citation Types

0
1
0

Year Published

2023
2023
2023
2023

Publication Types

Select...
1

Relationship

0
1

Authors

Journals

citations
Cited by 1 publication
(1 citation statement)
references
References 37 publications
0
1
0
Order By: Relevance
“…Interestingly, microbiota-derived products, including short-chain fatty acids (SCFAs) such as butyrate, play a role in the stabilization of HIF, which in turn improves epithelial barrier functions [ 112 ] ( Figure 1 D). In an enteroid model of hypoxia, pre-treatment or concurrent treatment with different ratios of SCFA cocktails such as acetate, propionate, and butyrate led to increased transepithelial electrical resistance, as well as increased expression of key gut barrier and metabolism genes [ 113 ]. Thus, more research is warranted to characterize changes in EJCs during protozoan infections under hypoxic conditions, as well as the role of protozoa-associated dysbiotic microbiota and derived products in the loss of barrier functions.…”
Section: Protozoan Parasites and Hypoxiamentioning
confidence: 99%
“…Interestingly, microbiota-derived products, including short-chain fatty acids (SCFAs) such as butyrate, play a role in the stabilization of HIF, which in turn improves epithelial barrier functions [ 112 ] ( Figure 1 D). In an enteroid model of hypoxia, pre-treatment or concurrent treatment with different ratios of SCFA cocktails such as acetate, propionate, and butyrate led to increased transepithelial electrical resistance, as well as increased expression of key gut barrier and metabolism genes [ 113 ]. Thus, more research is warranted to characterize changes in EJCs during protozoan infections under hypoxic conditions, as well as the role of protozoa-associated dysbiotic microbiota and derived products in the loss of barrier functions.…”
Section: Protozoan Parasites and Hypoxiamentioning
confidence: 99%