Our system is currently under heavy load due to increased usage. We're actively working on upgrades to improve performance. Thank you for your patience.
2000
DOI: 10.2514/2.923
|View full text |Cite
|
Sign up to set email alerts
|

Effects of Injection Angle on Atomization of Liquid Jets in Transverse Airflow

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1
1

Citation Types

1
17
0
2

Year Published

2012
2012
2021
2021

Publication Types

Select...
5
2
1

Relationship

0
8

Authors

Journals

citations
Cited by 47 publications
(20 citation statements)
references
References 23 publications
1
17
0
2
Order By: Relevance
“…It was observed that wall static pressure upstream of the injection point increases with increase in the momentum flux ratios. Fuller et al (2000) conducted experimental investigations for the effect of injection angles on the atomization of the liquid jets in transverse air flow. Boles et al (2010) conducted computational investigations using LES and RANS simulations of sonic injection into a Mach 2 cross stream of air, helium, and ethylene to predict the upstream boundary layer structure.…”
Section: Review Of Literaturementioning
confidence: 99%
“…It was observed that wall static pressure upstream of the injection point increases with increase in the momentum flux ratios. Fuller et al (2000) conducted experimental investigations for the effect of injection angles on the atomization of the liquid jets in transverse air flow. Boles et al (2010) conducted computational investigations using LES and RANS simulations of sonic injection into a Mach 2 cross stream of air, helium, and ethylene to predict the upstream boundary layer structure.…”
Section: Review Of Literaturementioning
confidence: 99%
“…For a long time, the liquid jet that is injected perpendicularly into subsonic crossflows and atomized into fine drops by aerodynamic forces has been studied for application in liquid-fueled combustors, such as ramjet engines, scramjet engines, and the afterburner of jet engines. Since the combustion efficiency of these combustors is significantly influenced by the breakup characteristics of the liquid jet, considerable research has been carried out experimentally and analytically on the breakup characteristics of the liquid jet (Schetz et al (1977), Nguyen et al (1992), Inamura (2000), Wu et al (1997), Fuller et al (2000), Schetz et al (1980), Ingebo (1984), Inamura et al (1999)). Generally, the liquid jet (liquid column), breaks up into liquid clumps (ligaments), and a liquid clump disintegrates into finer particles (droplets).…”
Section: Introductionmentioning
confidence: 99%
“…They confirmed these assumptions through experiments and proposed an empirical correlation of the liquid column trajectories consisting of an injector diameter and liquid/air momentum flux ratio. Fuller et al (2000) investigated the effects of injection angle on the column trajectories in transverse airflows. Schetz et al (1980) indicated that the growth of the acceleration wave on the liquid column by aerodynamic force was an important factor of the breakup process.…”
Section: Introductionmentioning
confidence: 99%
“…Debido al alto consumo de combustible se observa una gran producción tanto de especies finales como precursoras del hollín. El hollín, componente principal del material particulado generado en el proceso de combustión Diesel [57], comienza a formarse cerca del máximo característico de la ley de liberación de calor, inicialmente como partículas muy pequeñas en la zona frontal del chorro hasta consolidarse en los límites de la llama de difusión. La radiación del hollín producida por la incandescencia de las partículas, presentaórdenes de magnitud muy por encima de la emisión quimioluminiscente y son estas partículas las que ocupan la sección principal del chorro.…”
Section: Atomizaciónunclassified
“…Estos resultados sirvieron a la ampliación y validación del modelo de chorro Diesel presentado un año antes por uno de los autores [38]. Otros trabajos donde se visualiza la molécula NO con las técnicas de LIF se encuentra en [57,58].…”
Section: Técnicas Lif Para Estudios De Combustiónunclassified