Purpose
Nitrification inhibitor plays an important regulatory role in inhibiting the nitrification of ammonium in soils. However, most of nitrification inhibitors lack the sustainable effects in suppressing the nitrification of ammonium. In this study, a novel DMS nitrification inhibitor was prepared and tested to explore its lasting effect of nitrification suppression in black soil.
Materials and methods
Both culture experiments and field trial were performed in black soils. Three kinds of nitrification inhibitors (NIs), dicyandiamide (DCD) with low bioactivity, 3,4-dimethylpyrazole phosphate (DMPP) with high bioactivity, and a novel 3,4-dimethylpyrazole sulfate zinc (DMS) with long half-life, were applied into soils, respectively, and the abundance changes of ammonia-oxidizing archaea (AOA) and ammonia-oxidizing bacteria (AOB) were investigated; then, the accumulation changes of inorganic nitrogen, nitrogen use efficiency, and crop yields were furtherly evaluated.
Results and discussions
A novel DMS nitrification inhibitor with high activity and long half-life maintained a persistent effect of nitrification suppression, and remarkably increased the accumulation of ammonium nitrogen in soil, thus improving nitrogen use efficiency and crop yields. This study implies that lowering the nitrogen loss of nitrification-triggered in soil is of great importance for improving nitrogen use efficiency.
Conclusions
This study provided an insight into the sustainable nitrification suppression of a novel DMS nitrification inhibitor under excessive application of nitrogen fertilizer in black soils. Compared with improving the activity, reasonably prolonging the validity of nitrification inhibitors in soil is a more important strategy increasing the sustainable effects of nitrification inhibition, and the survival period of nitrification inhibitors in soil should be a crucial factor improving nitrogen use efficiency.