2021
DOI: 10.1016/j.chemosphere.2021.129806
|View full text |Cite
|
Sign up to set email alerts
|

Effectiveness of a biogenic composite derived from cattle horn core/iron nanoparticles via wet chemical impregnation for cadmium (II) removal in aqueous solution

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1

Citation Types

0
1
0

Year Published

2021
2021
2024
2024

Publication Types

Select...
5
1

Relationship

0
6

Authors

Journals

citations
Cited by 9 publications
(1 citation statement)
references
References 40 publications
0
1
0
Order By: Relevance
“…Finally, in a similar way, the presence of lead was calculated and registered 497.27 ppm which decreased to 467.91 ppm, an approximate of 30 ppm between the initial and final concentration because the pH is an influential variable during the absorption of lead, it has been shown that pH < 4 protonation decreases the amount of active sites causing an electrostatic repulsion condition on the surface of the sorbent between H + ions and Pb ions, causing less adsorption, likewise with pH > 6 it favors the generation of lead hydroxides which tend to precipitate [23,67]. A similar situation is evidenced with Cadmium according to the literature, where a deprotonation of the sample contributes to a better removal [68]. In our results, the high percentage of removal of the Cadmium C3 sample is also due to the low initial concentration for metal compared to Chromium and lead samples.…”
Section: Magnetization Measurements (Spion)mentioning
confidence: 54%
“…Finally, in a similar way, the presence of lead was calculated and registered 497.27 ppm which decreased to 467.91 ppm, an approximate of 30 ppm between the initial and final concentration because the pH is an influential variable during the absorption of lead, it has been shown that pH < 4 protonation decreases the amount of active sites causing an electrostatic repulsion condition on the surface of the sorbent between H + ions and Pb ions, causing less adsorption, likewise with pH > 6 it favors the generation of lead hydroxides which tend to precipitate [23,67]. A similar situation is evidenced with Cadmium according to the literature, where a deprotonation of the sample contributes to a better removal [68]. In our results, the high percentage of removal of the Cadmium C3 sample is also due to the low initial concentration for metal compared to Chromium and lead samples.…”
Section: Magnetization Measurements (Spion)mentioning
confidence: 54%