2021
DOI: 10.1016/j.ceramint.2021.03.258
|View full text |Cite
|
Sign up to set email alerts
|

Effect of well-designed graphene heat conductive channel on the thermal conductivity of C/SiC composites

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2

Citation Types

0
2
0
2

Year Published

2021
2021
2024
2024

Publication Types

Select...
7

Relationship

0
7

Authors

Journals

citations
Cited by 9 publications
(4 citation statements)
references
References 23 publications
0
2
0
2
Order By: Relevance
“…由于纤维预制体的结构特点,纤维增强碳化硅 陶瓷基复合材料沿厚度方向,碳纤维与基体之间结 合较弱,热输运能力较面内方向弱,面内热导率约 是沿厚度热导率的 10~100 倍 [60] , 热导率各向异性。 研究者围绕高导热填料的均匀分散以及如何构建连 续有效的导热通路,进行了诸多探索。 Zhang 等 [61] 首先采用化学气相渗透工艺制备出 二维碳纤维增强碳化硅陶瓷基复合材料,厚度方向 经连续微波激光(Continuous Wave Laser)打孔后,注 射多层石墨烯溶液用以构筑厚度方向连续导热通道, 最后经化学气相渗透工艺增密(如图 10 所示) ,使 碳纤维增强碳化硅陶瓷基复合材料的热导率提高了 204%,为 设计、制备连续纤维增强高导热碳化硅陶 瓷基复合材料提供了一种新的有效方法。 图 10 含石墨烯-碳纤维增强碳化硅陶瓷基复合材料导热通路设计 [61] Fig. 10 Design of heat conductive channels of Cf/SiC with well-designed graphene [61] Zhang 等 [62] [62] Fig.…”
Section: 结构设计提高热导率unclassified
See 1 more Smart Citation
“…由于纤维预制体的结构特点,纤维增强碳化硅 陶瓷基复合材料沿厚度方向,碳纤维与基体之间结 合较弱,热输运能力较面内方向弱,面内热导率约 是沿厚度热导率的 10~100 倍 [60] , 热导率各向异性。 研究者围绕高导热填料的均匀分散以及如何构建连 续有效的导热通路,进行了诸多探索。 Zhang 等 [61] 首先采用化学气相渗透工艺制备出 二维碳纤维增强碳化硅陶瓷基复合材料,厚度方向 经连续微波激光(Continuous Wave Laser)打孔后,注 射多层石墨烯溶液用以构筑厚度方向连续导热通道, 最后经化学气相渗透工艺增密(如图 10 所示) ,使 碳纤维增强碳化硅陶瓷基复合材料的热导率提高了 204%,为 设计、制备连续纤维增强高导热碳化硅陶 瓷基复合材料提供了一种新的有效方法。 图 10 含石墨烯-碳纤维增强碳化硅陶瓷基复合材料导热通路设计 [61] Fig. 10 Design of heat conductive channels of Cf/SiC with well-designed graphene [61] Zhang 等 [62] [62] Fig.…”
Section: 结构设计提高热导率unclassified
“…由于纤维预制体的结构特点,纤维增强碳化硅 陶瓷基复合材料沿厚度方向,碳纤维与基体之间结 合较弱,热输运能力较面内方向弱,面内热导率约 是沿厚度热导率的 10~100 倍 [60] , 热导率各向异性。 研究者围绕高导热填料的均匀分散以及如何构建连 续有效的导热通路,进行了诸多探索。 Zhang 等 [61] 首先采用化学气相渗透工艺制备出 二维碳纤维增强碳化硅陶瓷基复合材料,厚度方向 经连续微波激光(Continuous Wave Laser)打孔后,注 射多层石墨烯溶液用以构筑厚度方向连续导热通道, 最后经化学气相渗透工艺增密(如图 10 所示) ,使 碳纤维增强碳化硅陶瓷基复合材料的热导率提高了 204%,为 设计、制备连续纤维增强高导热碳化硅陶 瓷基复合材料提供了一种新的有效方法。 图 10 含石墨烯-碳纤维增强碳化硅陶瓷基复合材料导热通路设计 [61] Fig. 10 Design of heat conductive channels of Cf/SiC with well-designed graphene [61] Zhang 等 [62] [62] Fig. 11 Structural design of three-dimensional-linked Cf/SiC with micro-pipelines [62] Chen 等 [52] 通过在碳纤维表面分层生长垂直排 列的碳纳米管(CNTs),如图 12 所示,堆垛以形成三 维预制体结构,然后经聚合物浸渍裂解工艺制备得 到碳化硅陶瓷基复合材料,其厚度热导率从 7.94 W/(m• K)提高到 16.80 W/(m• K)。 图 12 碳纳米管-碳纤维微观组织 [52] Fig.…”
Section: 结构设计提高热导率unclassified
“…Due to the anisotropic physical characteristics of carbon fibers and the directional woven structure of preforms, C/SiC composites have anisotropy in both mechanical and thermal properties. [10][11][12][13][14] According to the woven method of fibers, the woven types of C/SiC composites include 2D plain woven, 3D orthogonal woven, and 3D needled structure types. [1,15] The heat transfer along the carbon fiber is several times greater than that perpendicular to it, [16][17][18] while the SiC matrix is isotropic.…”
mentioning
confidence: 99%
“…[19,20] Many works have been conducted to predict the anisotropic thermal conductivity 𝜆anisotropic of C/SiC composites numerically, [21][22][23][24] and yet the corresponding experimental studies at high temperature are rarely reported. For the studies of the measurement of the 𝜆 out-of-plane , Zhang et al [11,12] obtained the out-of-plane thermal diffusivity 𝑎 out-of-plane of 2D plain woven C/SiC composite using a laser flash analysis (LFA) method within the temperature range of 100-500 ∘ C. Cai et al [13] measured the 𝑎 out-of-plane of 3D C/SiC composite over a temperature range from 25 ∘ C to 1300 ∘ C by adopting the LFA method, and the 𝜆 out-of-plane was obtained by measuring its specific heat capacity and density simultaneously. Xu et al [14] studied the 𝜆 in-plane and 𝜆 out-of-plane of 2D plain woven C/SiC composite using a transient plane source (TPS) method within the temperature range of 27-800 ∘ C for comparison with numerical results.…”
mentioning
confidence: 99%