Our system is currently under heavy load due to increased usage. We're actively working on upgrades to improve performance. Thank you for your patience.
2015
DOI: 10.1364/ome.5.001109
|View full text |Cite
|
Sign up to set email alerts
|

Effect of TEA on the blue emission of ZnO quantum dots with high quantum yield

Abstract: This work reports the luminescence, morphology and synthesis of ZnO quantum dots using a simple wet chemical method and different concentrations of Triethanolamine (TEA) as surfactant. Those nanoparticles emitted a strong blue emission band centered at 429 nm when they are dispersed in hexane. Spherical quantum dots with sizes ranging from 3 to 7 nm were obtained for concentrations from 0 to 0.7 ml. of TEA, whereas a mixture with oval-like nanoparticles was observed from concentrations above of 1.1 ml of TEA. … Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
2
1

Citation Types

0
4
0
3

Year Published

2017
2017
2023
2023

Publication Types

Select...
5
1
1

Relationship

0
7

Authors

Journals

citations
Cited by 25 publications
(7 citation statements)
references
References 40 publications
0
4
0
3
Order By: Relevance
“…For glucose sensing, ZnO nanostructures integrated in various kinds of sensors have demonstrated outstanding properties such as high sensitivity, high selectivity, low limit of detection (LOD), and good biocompatibility. Due to its intense photoluminescent emission at room temperature [3][4][5][6] with a fluorescence quantum yield of approximately 0.45 [7,8], its high isoelectric point (IEP) of about 9.5 enabling the adsorption of low IEP materials like proteins or glucose [9], and especially its photo-oxidation property [10,11], ZnO nanostructures have been successfully implemented in fluorescent glucose probes [12][13][14][15][16]. Kim et al, Sodzel et al, and Sarangi et al are pioneers who developed glucose sensors, which can measure glucose concentration through the PL quenching of ZnO nanocrystals [12][13][14].…”
Section: Introductionmentioning
confidence: 99%
“…For glucose sensing, ZnO nanostructures integrated in various kinds of sensors have demonstrated outstanding properties such as high sensitivity, high selectivity, low limit of detection (LOD), and good biocompatibility. Due to its intense photoluminescent emission at room temperature [3][4][5][6] with a fluorescence quantum yield of approximately 0.45 [7,8], its high isoelectric point (IEP) of about 9.5 enabling the adsorption of low IEP materials like proteins or glucose [9], and especially its photo-oxidation property [10,11], ZnO nanostructures have been successfully implemented in fluorescent glucose probes [12][13][14][15][16]. Kim et al, Sodzel et al, and Sarangi et al are pioneers who developed glucose sensors, which can measure glucose concentration through the PL quenching of ZnO nanocrystals [12][13][14].…”
Section: Introductionmentioning
confidence: 99%
“…Theoretical spectra were calculated, taking into account the width parameters (the shoulder and unresolved bands) of each emission band: 432, 382, 404, 412, 408 and 374 nm. It is believed that violet emission usually occurs due to interstitial defects of zinc (Zn i ) during the electronic transition from the level of the Zn i site to the valence band, and blue emission is associated with the transition from the Zn i level to vacant defects [ 21 , 23 , 24 , 25 ].…”
Section: Resultsmentioning
confidence: 99%
“…Estos defectos nativos pueden existir en un estado neutro o en diferentes estados cargados y su concentración tiene un impacto directo en las intensidades de las emisiones azul, verde, amarillo y naranja-rojo [2,39,40]. La emisión azul tiene su origen en las transiciones electrónicas de V O y Zn i a la banda de valencia (VB) [17,40], la emisión verde es consecuencia de las transiciones de la banda de conducción (CB) a V O [41,42], la emisión amarilla se atribuye a transiciones de la CB a O i [43,44], y la emisión naranja-roja a transiciones de Zn i a O i [45,46]. Esta característica de emisión multicolor en la región visible del ZnO es de gran trascendencia para las aplicaciones de LED de luz blanca.…”
Section: Propiedades Fotoluminiscentesunclassified
“…Para las muestras preparadas con surfactante, los espectros presentan una banda de emisión principal en la región azul y su intensidad aumenta con la concentración de Ca (de 6 a 25% mol), la emisión global de la banda azul disminuye para una concentración de Ca de 32% mol. Reportes previos han señalado que el uso de TEA como surfactante puede incrementar la emisión azul, como ocurre en nuestro caso [17,91]. En general, la intensidad de las emisiones azules a 437 y 473 nm aumenta ≈ 2.7 y 2.4 veces, respectivamente, cuando la concentración de Ca varía de 6 a 25% mol.…”
Section: Propiedades Fotoluminiscentesunclassified
See 1 more Smart Citation