The advancement in performance in the domain of flexible wearable strain sensors has become increasingly significant due to extensive research on laser-induced graphene (LIG). An innovative doping modification technique is required owing to the limited progress achieved by adjusting the laser parameters to enhance the LIG’s performance. By pre-treating with AgNO3, we successfully manufactured LIG with a uniform dispersion of silver nanoparticles across its surface. The experimental results for the flexible strain sensor exhibit exceptional characteristics, including low resistance (183.4 Ω), high sensitivity (426.8), a response time of approximately 150 ms, and a relaxation time of about 200 ms. Moreover, this sensor demonstrates excellent stability under various tensile strains and remarkable repeatability during cyclic tests lasting up to 8000 s. Additionally, this technique yields favorable results in finger bending and hand back stretching experiments, holding significant reference value for preserving the inherent characteristics of LIG preparation in a single-step and in situ manner.