2020
DOI: 10.1002/jez.2360
|View full text |Cite
|
Sign up to set email alerts
|

Effect of salinity acclimation on osmoregulation, oxidative stress, and metabolic enzymes in the invasive Xenopus laevis

Abstract: Aquatic animals often display physiological adjustments to improve their biological performance and hydrosaline balance in saline environments. In addition to energetic costs associated with osmoregulation, oxidative stress, and the activation of the antioxidant system are common cellular responses to salt stress in many species, but the knowledge of osmoregulation-linked oxidative homeostasis in amphibians is scarce. Here we studied the biochemical responses and oxidative responses of Xenopus laevis females e… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1

Citation Types

0
1
0

Year Published

2022
2022
2023
2023

Publication Types

Select...
1
1

Relationship

0
2

Authors

Journals

citations
Cited by 2 publications
(1 citation statement)
references
References 65 publications
0
1
0
Order By: Relevance
“…An accelerated amount of electron leakage during oxidative phosphorylation caused by the physiological adaptation and osmoregulatory responses that occur to maintain the survival of species often contributes to oxidative stress. Therefore, total antioxidant capacity is inversely proportional to plasma osmolality in hypersaline conditions [22].…”
Section: Oxidative Stress Physiology In Aquatic Vertebratesmentioning
confidence: 99%
“…An accelerated amount of electron leakage during oxidative phosphorylation caused by the physiological adaptation and osmoregulatory responses that occur to maintain the survival of species often contributes to oxidative stress. Therefore, total antioxidant capacity is inversely proportional to plasma osmolality in hypersaline conditions [22].…”
Section: Oxidative Stress Physiology In Aquatic Vertebratesmentioning
confidence: 99%