2022
DOI: 10.35848/1347-4065/aca912
|View full text |Cite
|
Sign up to set email alerts
|

Effect of morphology on the phonon thermal conductivity in Si/Ge superlattice nanowires

Abstract: We used nonequilibrium molecular dynamics to investigate the role of morphology in the phonon thermal conductivity of 〈100〉, 〈110〉, 〈111〉 and 〈112〉-oriented Si/Ge superlattice nanowires at 300 K. Such nanowires with 〈112〉 growth direction were found to possess the lowest values of the thermal conductivity [1.6 W/(m·K) for a Si and Ge segment thickness of ∼3 nm] due to the lowest average group velocity and highly effective {113} facets and Si/Ge(112) interface for phonon-surface and phonon-interface scattering,… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 37 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?