2023
DOI: 10.1038/s41598-023-37060-w
|View full text |Cite
|
Sign up to set email alerts
|

Effect of laser shock peening on microstructure and mechanical properties of laser cladding 30CrMnSiNi2A high-strength steel

Abstract: The effect of laser shock peening (LSP) on the microhardness and tensile properties of laser cladding (LC) 30CrMnSiNi2A high-strength steel was studied. After LSP, the microhardness of the cladding zone reached approximately 800 HV0.2, which was 25% higher than that of the substrate, while the cladding zone without LSP had an approximately 18% increase in its microhardness. Two strengthening processes were designed: groove LSP + LC + surface LSP versus LC + surface LSP. The former's tensile strength and yield … Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1

Citation Types

0
2
0

Year Published

2023
2023
2024
2024

Publication Types

Select...
5

Relationship

0
5

Authors

Journals

citations
Cited by 5 publications
(2 citation statements)
references
References 36 publications
0
2
0
Order By: Relevance
“…Zhou et al [36] investigated the lodging of pre-coated nanopowders into the near-surface layer of IN718 SPF superalloy material by using LSP-induced GPa pressure to enhance surface hardness. Wang et al [37] investigated the microhardness of LC-treated 30CrMnSiNi2A high-strength steel after LSP treatment, which resulted in being 25% higher than that of the substrate. In their work, Tong et al [38] utilized the LSP technique to modify the residual stress state and microstructure of Cr-Mn-Fe-Co-Ni HEA surface layers fabricated by using laser-directed energy deposition; they found a variation in the surface residual stress state from tensile residual stress to compressive residual stress in the LSP-treated specimens, and they observed the closing of pores in the surface layers due to severe plastic deformation (SPD).…”
Section: Development Of Lspmentioning
confidence: 99%
“…Zhou et al [36] investigated the lodging of pre-coated nanopowders into the near-surface layer of IN718 SPF superalloy material by using LSP-induced GPa pressure to enhance surface hardness. Wang et al [37] investigated the microhardness of LC-treated 30CrMnSiNi2A high-strength steel after LSP treatment, which resulted in being 25% higher than that of the substrate. In their work, Tong et al [38] utilized the LSP technique to modify the residual stress state and microstructure of Cr-Mn-Fe-Co-Ni HEA surface layers fabricated by using laser-directed energy deposition; they found a variation in the surface residual stress state from tensile residual stress to compressive residual stress in the LSP-treated specimens, and they observed the closing of pores in the surface layers due to severe plastic deformation (SPD).…”
Section: Development Of Lspmentioning
confidence: 99%
“…The current literature on the 30CrMnSiN2A material focuses mainly on fatigue life and mechanical properties [ 18 , 19 , 20 , 21 , 22 , 23 ], with barely any attention paid to the wear resistance. Xue et al [ 24 ] investigated the wear resistance of 30CrMnSiNi2A and analyzed the wear mechanisms under different loads and friction speeds.…”
Section: Introductionmentioning
confidence: 99%