Reheating and oven-aging procedures of plant-produced asphalt mixtures in laboratories are important topics to consider as performance testing of mixtures becomes more popular among agencies. Differences between laboratory equipment and procedure could significantly affect performance properties. The objective of this study is to investigate the influence of sample size, oven type, and variation in reheating/aging temperatures on the results of two performance tests on plant-produced mixtures. A selected mixture was tested for volumetric properties and performance using Hamburg wheel-tracking (HWT) and semi-circular bending (SCB-IFIT) tests. Results show that reheating mixtures uncovered and in smaller containers could significantly reduce the time to achieve aging temperature, and could make the process more efficient and consistent. In addition, aging using three different oven types showed that temperature within ovens can vary significantly depending on the location of the sample inside the oven, which affects the time required to reach the target temperature, and thus may also influence the aging of the sample. The mixture volumetric properties show that the effect of various heating conditions is marginal. Using the developed reheating/aging procedure of this study, the results of the HWT and SCB-IFIT tests showed no substantial effect of oven type on rutting and cracking resistance. The overall results indicate that there is a need to standardize the conditions of reheating, sample geometry, and to verify uniformity of temperature in ovens. Such standardization can further reduce variability and thus should be part of the AASHTO/ASTM standard procedures for quality control, or of laboratory equipment calibration procedures.