An experimental and numerical investigation is conducted to study the influence of different cooling schemes on the wall temperature of the flame tube in a small triple-swirler combustor in this paper. Two different cooling structures are adopted: the impingement-film and inclined multi-hole cooling structure (Scheme B, C), and the inclined multi-hole control group (Scheme A). The impact of parameters including inlet temperature (373–423 K), inlet Mach number (Ma) (0.12–0.18), and fuel–air ratio (FAR) (0.02–0.03) are discussed. The results show that the wall temperature of the flame tube rises with the increase in inlet temperature; as the inlet Mach number increases, the wall temperature (Scheme B, C) of the primary zone goes up and is distributed more uniformly; as FAR rises, the wall temperature in Scheme C is nearly unchanged, while it is increased in Scheme A and B. For the range of parameters considered in this study, the lowest wall temperature and the best cooling effect are observed in Scheme C. The experiment conducted on the impingement-film and inclined multi-hole structure shows a better cooling effect than that conducted on the traditional inclined multi-hole structure. Compared with the row number of multi-inclined holes, the diameter of jet hole has a more significant influence on the cooling effect.