Cytosolic glutathione S-transferase (GSH transferase) activity towards 1-chloro-2,4-dinitrobenzene (CDNB) was elevated approximately three to four-fold in intestine and liver of mummichog (Fundulus heteroclitus) collected from a creosote-contaminated site in the Elizabeth River, Virginia. Intestinal GSH transferase activity at the most heavily contaminated site, at a moderately contaminated site and at a relatively clean site averaged 3.64, 2.83 and 1.11µmoles/min/mg respectively, while values for liver at these sites averaged 2.84, 1.75 and 0.93µmoles/min/mg. In addition, densitometric tracings of sodium dodecylsulfate-polyacrylamide gels of intestine and liver cytosol revealed a similar trend in the staining intensity of a 25.8 kD protein band, which lies within the molecular weight range of GSH transferase subunits. Activity in putative preneoplastic and neoplastic hepatic lesions of fish collected from the creosote-contaminated site was not significantly different from that of adjacent normal tissue. In the laboratory, dietary betanaphthoflavone (ßNF) treatment resulted in a three-fold increase in intestinal GSH transferase. Hepatic GSH transferase activity in the same fish was not affected by dietary ßNF although hepatic monooxygenase activity, measured as ethoxyresorufin O-deethylase (EROD), was. The results of this study indicate a response of the intestinal detoxification system to environmental contaminants and supports previous studies on the importance of intestinal metabolism of foreign compounds. Further, our results indicate the trend towards elevated GSH transferase in liver of feral fish could not be attributed to a cancerous disease state in these fish but indicates chemical induction in this organ as well.