2001
DOI: 10.1016/s0043-1648(01)00664-0
|View full text |Cite
|
Sign up to set email alerts
|

Effect of carbide fraction and matrix microstructure on the wear of cast iron balls tested in a laboratory ball mill

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
4

Citation Types

5
36
0
10

Year Published

2011
2011
2022
2022

Publication Types

Select...
7
1

Relationship

0
8

Authors

Journals

citations
Cited by 108 publications
(51 citation statements)
references
References 5 publications
5
36
0
10
Order By: Relevance
“…Concerning wet conditions without corrosive media, Albertin and Sinatora [9] tested cast iron balls produced from Fe-(12 to 25)Cr-(1.6 to 3.5)C with carbide fractions of 13 to 40% by wet, ball milling with hematite (400-600 HV), phosphate rock (about 300 HV) or quartz sand (about 1000 HV) as abrasives and noted that the effect of carbide volume fraction on the wear resistance of high chromium cast irons depends on the abrasive hardness. For a very hard abrasive such as quartz, increasing the carbide volume fraction in the same metallic matrix lead to increasing wear rate by a mechanism combining rapid removal of the metallic matrix followed by micro-cracking of the carbides, consequently a martensitic steel presented the best performance against the quartz abrasive, as compared to that of high chromium cast irons.…”
Section: Introductionmentioning
confidence: 99%
“…Concerning wet conditions without corrosive media, Albertin and Sinatora [9] tested cast iron balls produced from Fe-(12 to 25)Cr-(1.6 to 3.5)C with carbide fractions of 13 to 40% by wet, ball milling with hematite (400-600 HV), phosphate rock (about 300 HV) or quartz sand (about 1000 HV) as abrasives and noted that the effect of carbide volume fraction on the wear resistance of high chromium cast irons depends on the abrasive hardness. For a very hard abrasive such as quartz, increasing the carbide volume fraction in the same metallic matrix lead to increasing wear rate by a mechanism combining rapid removal of the metallic matrix followed by micro-cracking of the carbides, consequently a martensitic steel presented the best performance against the quartz abrasive, as compared to that of high chromium cast irons.…”
Section: Introductionmentioning
confidence: 99%
“…The traditional method to manufacture hot forging die is to machine forged modules of 5CrNiMo or H13 and to do surface treatment such as nitriding, carburizing, shot peening etc. to extend the service life of dies (Albertin et al 2001; Bagherifard et al 2013;Chen 2002). However, this method has many defects such as low material utilization, large amount of finishing, long production period, high cost and so on (Ciancaglioni et al 2012), which impedes the upgrading of products and lowers the competition ability.…”
Section: Introductionmentioning
confidence: 99%
“…A resistência ao desgaste tende a aumentar com a porcentagem de carbonetos, até um limite a partir do qual predomina um comportamento frágil. (2) A descrição da microestrutura e propriedades da matriz metálica é complexa, devido à grande diversidade de possibilidades, que incluem austenita e martensita com diversas composições químicas e propriedades, Figura 1. Superfície liquidus do sistema Fe-Cr-C, (1) (% em massa).destacando-se a região correspondente às ligas comerciais (a, d = ferrita; g = austenita).…”
Section: Introductionunclassified
“…Ocorrência de trincas subsuperficiais nos carbonetos no caso de matriz austenítica, durante ensaio de desgaste em moinho de bolas. (2) Como a microestrutura bruta de fundição em geral é constituída majoritariamente por austenita retida, na grande maioria das aplicações realiza-se tratamento térmico de desestabilização da austenita seguido de têmpera. A abordagem clássica para a desestabilização da austenita (3)(4)(5)(6)(7) consiste na manutenção da peça no campo austenítico, promovendo a formação de carbonetos ao carbono.…”
Section: Introductionunclassified
See 1 more Smart Citation