Our system is currently under heavy load due to increased usage. We're actively working on upgrades to improve performance. Thank you for your patience.
2022
DOI: 10.1039/d2ce00562j
|View full text |Cite|
|
Sign up to set email alerts
|

Effect of Ca2+ doping on the upconversion luminescence properties of NaYF4:Yb3+/Tm3+ nanoparticles and study of its temperature measurement performance

Abstract: The solvothermal method prepared a series of Yb3+/Tm3+/Ca2+ co-doped NaYF4 nanoparticles with different Ca2+ contents. Strong upconversion blue fluorescence could be observed under 980 nm laser excitation of the samples....

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
3
1

Citation Types

0
10
0
1

Year Published

2022
2022
2024
2024

Publication Types

Select...
6

Relationship

2
4

Authors

Journals

citations
Cited by 8 publications
(11 citation statements)
references
References 56 publications
0
10
0
1
Order By: Relevance
“…In order to further analyze the principle of fluorescence enhancement, the fluorescence lifetimes of 475 and 700 nm were selected for analysis. As shown in Figure a,b, the fluorescence lifetimes of the C, CS, and CSS nanoparticles first increase and then become shorter, regardless of the 475 nm emission peak or the 700 nm emission peak, and according to the fluorescence lifetime equation, τ = 1 k = 1 1 / k normalf + k i …”
Section: Resultsmentioning
confidence: 92%
See 1 more Smart Citation
“…In order to further analyze the principle of fluorescence enhancement, the fluorescence lifetimes of 475 and 700 nm were selected for analysis. As shown in Figure a,b, the fluorescence lifetimes of the C, CS, and CSS nanoparticles first increase and then become shorter, regardless of the 475 nm emission peak or the 700 nm emission peak, and according to the fluorescence lifetime equation, τ = 1 k = 1 1 / k normalf + k i …”
Section: Resultsmentioning
confidence: 92%
“…To further demonstrate that the upconversion process is a multiphoton emission process, we selected 345, 475, 646, and 700 nm ( 3 F 3 → 3 H 6 ) fluorescence emission peaks for analysis, and according to the double logarithmic equation of fluorescence intensity versus laser power density, I normalU normalC .25em P normalN normalI normalR n where I denotes the fluorescence emission intensity, UC denotes the upconversion process, P denotes the laser power density, NIR denotes the infrared excitation light at 980 nm, and n denotes the number of photons to be absorbed. As shown in Figure b, the n values for 1 D 2 → 3 H 6 , 1 G 4 → 3 H 6 , 1 G 4 → 3 F 4 , and 3 F 3 → 3 H 6 are 3.30, 2.46, 2.82, and 1.52, respectively, which indicate that they correspond to the four-photon emission, three-photon emission, and two-photon emission processes.…”
Section: Resultsmentioning
confidence: 99%
“…The repeatability results determine how well the temperature sensor responds to changes in temperature rise and fall, while δ T describes the lowest temperature it can resolve and is usually determined using the experimental detection device, the acquisition conditions, and the signal-to-noise ratio. For a given experimental instrument and acquisition conditions, δ T can be assessed by the following equation: 3,16,53 where δFIR is the uncertainty of the FIR, δFIR/FIR is closely related to the signal-to-noise ratio, so its value can be estimated using the signal-to-noise ratio to derive δ T . As can be seen in Fig.…”
Section: Resultsmentioning
confidence: 99%
“…Yb 3+ with a large absorption cross-section can efficiently absorb photon energy generated under near-infrared light (980 nm) excitation by transferring the energy toward the luminescent center, making it an ideal sensitizer. 15,16…”
Section: Introductionmentioning
confidence: 99%
“…2)(新疆发光矿物与光功能材料研究重点实验室,乌鲁木齐 830054) 摘 要 用高温固相法制备了不同浓度的Tm 3+ 和Yb 3+ 共掺杂Bi 2 WO 6 上转换发光材料。 对合成粉末的微结构、上转换发射光谱,以及材料的光学温度传感性质进行了表 征和分析。XRD结果显示,Tm 3+ 和Yb 3+ 离子的掺杂基本不影响Bi 2 WO 6 基质材料 的正交晶系结构。在980nm激发下,Tm 3+ 和Yb 3+ 掺杂浓度分别是1%和6%时获得 样品中Tm 3+ 发 射 强 度 最 大 。 随 激 发 泵 浦 功 率 从 199mW 增 加 到 400mW , 1%Tm 3+ ,6%Yb 3+ :Bi 2 WO 6 样品中Tm 3+ 的4个发射峰强度均增强。199mW-400 mW激 发功率下,样品光强I和激发功率P n 呈现线性关系。计算该范围激发泵浦功率和 Tm 3+ 发射强度的关系,得到Tm 3+ 的4个发射峰478nm、650nm、685nm、705nm分 别对应n值为1.01、 1.34、 1.77和1.75,这 表明以上发射峰均源于双光子吸收。 980nm 激发(功率379mW)下,当温度从298K升高到573K时,1%Tm 3+ ,6%Yb 3+ :Bi 2 WO 6 样品中Tm 3+ 的热耦合能级对( 3 F 3 , 3 F 2 )产生685nm和705 nm处发射强度分别增 加了31.6倍和28.4倍。拟合样品中Tm 3+ 的热耦合能级对( 3 F 3 , 3 F 2 )的荧光强度比 与温度的关系,计算得到在298K时,样品最大绝对测温灵敏度为0.00254K -1 ,最 大相对测温灵敏度为0.00144K -1 。同样条件下,拟合非热耦合能级对( 3 F 3 , 1 G 4 ) 产生的705nm和650nm荧光强度比与温度关系,计算得到在573K时,最大绝对测 温灵敏度为0.167K -1 。 298K时最大相对测温灵敏度为0.0378K -1 , 比热耦合能级 ( 3 F 3 , 3 F 2 )表征温度的相对最大测温灵敏度S r 提高了26倍。 近红外响应的稀土上转换纳米材料,具有颗粒尺寸可调、光稳定性好、低毒 性、背景荧光干扰小、光损伤小等优点 [1] ,在生物组织或细胞内的温度传感具有 广阔的应用价值。低声子能量基质材料可以有效降低非辐射跃迁概率,从而增加 发光中心的辐射跃迁概率,提高上转换荧光量子效率 [2] 。相比氧化物,钨酸铋 (Bi 2 WO 6 )基质材料的声子能量较低 [3] ,物理化学性质稳定,可作为上转换发光 材料的优选基质。稀土离子 Tm 3+ 拥有丰富的能级,相邻能级之间较大能量间隙, 不容易产生无辐射弛豫,但 Tm 3+ 在 980nm 处吸收很弱,要实现 Tm 3+ 的上转换发 光,需要加入在 980nm 处有较大的吸收截面的敏化剂 Yb 3+ 离子 [4] 。通过对近红外 光有较大吸收截面的 Yb 3+ 敏化,Tm 3+ 发出较强的可见光(蓝光、红光)和近红外 荧光,尤其是 Tm 3+ 的上转换荧光温度传感性质,备受国内外研究者的重点关注。 如 Junhao Xing 等 [5] 利用 Tm 3+ 发射光谱在 651nm 和 688nm 处的热耦合能级的荧光 粉强度比,获得了较高的相对测温灵敏度和绝对测温灵敏度,分别是 0.0414 K -1 (298K)和 0.1064 K -1 (573K)。Kamel Saidi 等 [6] 制备了基于 Tm 3+ ,Yb 3+ 共掺杂 Na 3 GdV 2 O 8 荧光粉, 该荧光粉在低激发功率下表现出较强的近红外发射, 在 565K 处得到了 0.042K -1 的相对测温灵敏度。Mingzhou Meng 等 [7] 通过将 Tm 3+ 和 Er 3+ 掺 杂核壳结构材料,不仅可以提高荧光强度,而且还可以同时在多个热耦合能级上 进行温度测量。Yunfei Zhuang 等 [8] 研究了 Ca 9 Y(PO 4 ) 7 : Tm 3+ , Yb 3+ 上转换荧光粉的 温度传感特性,实验结果表明该样品在 523K 的相对测温灵敏度和 823K 时绝对 测温灵敏度达到最大值,分别为 0.0104K -1 和 0.0807K -1 。Teng Zheng [9] 等采用溶胶 -凝胶法合成了双发光中心 Bi 2 MoO 6 : Yb 3+ , Er 3+ , Tm 3+ 荧光粉,研究了不同热耦合 和非热耦合能级的 Tm 3+ 和 Er 3+ 合成材料的测温性能, 该样品具有较高的相对测温 灵敏度,在 293K 时可达 0.059K -1 。谢宇等 [3] [12] ,上转换发光材料发射一个可见光子所吸收的激发 光子数 n 可由𝐼 ∝ 𝑃 𝑛 来确定,其中 I 是上转换发射强度,P 是泵浦功率。拟合实 验结果,样品中 Tm 3+ 的 478nm、650nm、685nm 和 705nm 四个发射峰度与激发 泵浦功率均为双对数曲线关系,如图 5 所示。计算得出以上四个发射峰强度对应 的激发光子数 n 值分别是 1.01,1.34,1.77,1.75。根据文献 [13] ,由 n 的取值可确定这 4 个上转换发射带产生的原因。计算结果表明,1%Tm 3+ ,6%Yb [14] ,激发态上粒子数会急剧增加。此外随温度的升高,平均声子数 增加,声子既会辅助 Yb 3+ 离子与 Tm 3+ 离子之间的能量传递,也会给非辐射跃迁提 供去活化所需要的活化能 [15]…”
unclassified