The fungal pathogen causes a variety of oral infections, including denture stomatitis, which is characterized by inflammation of the oral mucosa in direct contact with dentures and affects a significant number of otherwise healthy denture wearers. While antifungal treatment reduces symptoms, infections are often recurrent. One strategy to address this problem is to incorporate compounds with fungicidal activities into denture materials to prevent colonization. Our laboratory synthesized novel derivatives of 1,4-diazabicyclo[2.2.2]octane (DABCO), which is an organic compound typically used as a catalyst in polymerization reactions. DABCO derivatives with different aliphatic chain lengths (DC16, DC16F, DC18, and C6DC16), as well as methacrylate monomers conjugated to DABCO compounds (DC11MAF and C2DC11MAF), were synthesized and tested for antimicrobial activity. All the compounds exhibited fungicidal activity against several species at concentrations ranging between 2 and 4 μg/ml. Moreover, acrylic denture base resins fabricated to contain 1, 2, or 4 wt% DABCO compounds inhibited surface biofilm formation, as well as fungal growth, in disc diffusion assays. Remarkably, discs (4 wt%) aged for 2 months also exhibited approximately 100% growth-inhibitory activity. While some DABCO compounds exerted intermediate to high cytotoxicity against mammalian oral cell types, DC11MAF and denture base resin discs containing 2 or 4 wt% C2DC11MAF exhibited relatively low cytotoxicity against periodontal ligament (PDL) cell and gingival fibroblast (GF) lines, as well as primary oral epithelial cells. These studies demonstrate that DABCO derivatives can be incorporated into denture materials and exert fungicidal activity with minimal cytotoxicity to mammalian cells. DC11MAF and C2DC11MAF are considered strong candidates as therapeutic or preventive alternatives against-associated denture stomatitis.