2023
DOI: 10.4018/ijghpc.316157
|View full text |Cite
|
Sign up to set email alerts
|

Early Prediction of Heart Diseases using Naive Bayes Classification Algorithm and Laplace Smoothing Technique

Abstract: Nowadays, medical diseases are one of the primary causes of death, and it is one the major concerns of developed countries. So, the disease identification process needs a lot of attention since if the diseases are idenfied at the early stage, the rate of death can be decreased. Machine learning techniques is one of the popular approaches that is used for identifying the diseases at the early stage. In this paper, two machine learning techniques, namely Naive Bayes classification algorithm and Laplace smoothing… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1

Citation Types

0
0
0
1

Year Published

2023
2023
2023
2023

Publication Types

Select...
2

Relationship

0
2

Authors

Journals

citations
Cited by 2 publications
(2 citation statements)
references
References 22 publications
0
0
0
1
Order By: Relevance
“…Weighted Naive Bayes mempunyai kelebihan yaitu dasar penilaian akurasi tidak hanya probabilitas saja namun juga bobot setiap atribut yang ada di kelas tersebut. Bobot wi ditambahkan pada masing-masing atribut untuk menentukan bobot Weighted Naive Bayes [16].…”
Section: Pendahuluan 11 Latar Belakangunclassified
“…Weighted Naive Bayes mempunyai kelebihan yaitu dasar penilaian akurasi tidak hanya probabilitas saja namun juga bobot setiap atribut yang ada di kelas tersebut. Bobot wi ditambahkan pada masing-masing atribut untuk menentukan bobot Weighted Naive Bayes [16].…”
Section: Pendahuluan 11 Latar Belakangunclassified
“…The Naive Bayes algorithm The Naive Bayes algorithm is a widely used method for classification problems. It uses the Bayes theorem to calculate the probability of a sample belonging to each class and then assigns it to the class with the highest probability [31]. It is simple to implement as it only requires calculating probabilities and making predictions based on them.…”
Section: E Model Construction 1) Model Introductionmentioning
confidence: 99%