2010
DOI: 10.1016/j.physa.2009.08.021
|View full text |Cite
|
Sign up to set email alerts
|

Dynamics of the one-dimensional random transverse Ising model with next-nearest-neighbor interactions

Abstract: The dynamics of the one-dimensional random transverse Ising model with both nearest-neighbor (NN) and next-nearest-neighbor (NNN) interactions is studied in the high-temperature limit by the method of recurrence relations. Both the time-dependent transverse correlation function and the corresponding spectral density are calculated for two typical disordered states. We find that for the bimodal disorder the dynamics of the system undergoes a crossover from a collective-mode behavior to a central-peak one and fo… Show more

Help me understand this report
View preprint versions

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1

Citation Types

0
4
0

Year Published

2010
2010
2021
2021

Publication Types

Select...
7
1

Relationship

0
8

Authors

Journals

citations
Cited by 15 publications
(4 citation statements)
references
References 29 publications
0
4
0
Order By: Relevance
“…Also, from RRII one obtains (da 0 (t)/dt)| 0 0, which precludes a pure time exponential as well as other functions that do not have zero derivative at t 0. The method of recurrence relations have since been applied to a variety of problems, such as the electron gas [33][34][35][36], harmonic oscillator chains [37][38][39][40][41][42][43][44][45][46], many-particle systems [47][48][49][50], spin chains [51][52][53][54][55][56][57][58][59][60][61][62][63][64][65][66], plasmonic Dirac systems [67,68], dynamics of simple liquids [69,70], etc.…”
Section: The Methods Of Recurrence Relationsmentioning
confidence: 99%
“…Also, from RRII one obtains (da 0 (t)/dt)| 0 0, which precludes a pure time exponential as well as other functions that do not have zero derivative at t 0. The method of recurrence relations have since been applied to a variety of problems, such as the electron gas [33][34][35][36], harmonic oscillator chains [37][38][39][40][41][42][43][44][45][46], many-particle systems [47][48][49][50], spin chains [51][52][53][54][55][56][57][58][59][60][61][62][63][64][65][66], plasmonic Dirac systems [67,68], dynamics of simple liquids [69,70], etc.…”
Section: The Methods Of Recurrence Relationsmentioning
confidence: 99%
“…Also, from RRII one obtains (da 0 (t)/dt)| 0 = 0, which precludes a pure time exponential as well as other functions that do not have zero derivative at t = 0. The method of recurrence relations have since been applied to a variety of problems, such as the electron gas [27,28,30,29], harmonic oscillator chains [31,32,33,34,35,36,37,38,39,40], many-particle systems [44,43,41,42], spin chains [45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60], plasmonic Dirac systems [61,62], etc.…”
Section: The Methods Of Recurrence Relationsmentioning
confidence: 99%
“…In the spin-1/2 transverse ANNNI model in 1D at infinite temperature, the first 5 analytic results [31] and the first 9 numerical results [32] for the recurrants are known. By using exact diagonalization we obtain between 18 and 31 recurrants with varying degrees of accuracy.…”
Section: Numerical Evaluation Of the Recurrantsmentioning
confidence: 99%
“…In the present paper we are interested in the role of the NNN interactions on the dynamics of the transverse ANNNI model. This problem has been studied earlier using the method of recurrence relations [31,32]. The short-time behavior of the time-dependent spin correlation function is well understood.…”
Section: Introductionmentioning
confidence: 99%