2017
DOI: 10.1186/s40623-017-0731-2
|View full text |Cite
|
Sign up to set email alerts
|

Dynamics of a fault model with two mechanically different regions

Abstract: We consider a fault containing two regions with different mechanical behaviours: a strong, velocity-weakening region (asperity) and a weak, velocity-strengthening region. The fault is embedded in a shear zone subject to a constant strain rate by the motions of adjacent tectonic plates. The fault is modelled as a discrete dynamical system whose state is described by two variables expressing the slip deficits of the two regions. Because of plate motion, the asperity accumulates stress and eventually releases it,… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
4
1

Citation Types

1
17
0

Year Published

2018
2018
2023
2023

Publication Types

Select...
6
1

Relationship

3
4

Authors

Journals

citations
Cited by 8 publications
(18 citation statements)
references
References 46 publications
(67 reference statements)
1
17
0
Order By: Relevance
“…We now consider the perturbations of the state of the fault caused by the coseismic slip on surrounding faults. Following Dragoni and Piombo (2015), we assume that (1) the perturbations occur during an inter-seismic interval; (2) the stress transfer takes place over a time interval negligible with respect to the duration of the inter-seismic interval; and (3) at the time of the perturbation, the state of the fault is sufficiently far from the failure conditions and the stress transfer is small enough that the onset of motion of either asperity is not achieved immediately.…”
Section: Stress Perturbations From Neighbouring Faultsmentioning
confidence: 99%
See 1 more Smart Citation
“…We now consider the perturbations of the state of the fault caused by the coseismic slip on surrounding faults. Following Dragoni and Piombo (2015), we assume that (1) the perturbations occur during an inter-seismic interval; (2) the stress transfer takes place over a time interval negligible with respect to the duration of the inter-seismic interval; and (3) at the time of the perturbation, the state of the fault is sufficiently far from the failure conditions and the stress transfer is small enough that the onset of motion of either asperity is not achieved immediately.…”
Section: Stress Perturbations From Neighbouring Faultsmentioning
confidence: 99%
“…In a number of recent works, modelling of different mechanical phenomena in a two-asperity fault system has been addressed, such as stress perturbations due to surrounding faults (Dragoni and Piombo, 2015) and the radiation of seis-mic waves (Dragoni and Santini, 2015). In these models, the fault is treated as a discrete dynamical system with four dynamic modes: a sticking mode, corresponding to stationary asperities, and three slipping modes, associated with the separate or simultaneous failure of the asperities.…”
Section: Introductionmentioning
confidence: 99%
“…In a number of recent works, modelling of different mechanical phenomena in a two-asperity fault system has been addressed, such as stress perturbations due to surrounding faults (Dragoni and Piombo, 2015) (Dragoni and Santini, 2015). In these models, the fault is treated as a discrete dynamical system with four dynamic modes: a sticking mode, corresponding to stationary asperities, and three slipping modes, associated with the separate or simultaneous failure of the asperities.…”
Section: Introductionmentioning
confidence: 99%
“…The aim of the present paper is to discuss the combined effects of viscoelastic relaxation and stress perturbations on a two-asperity fault in the framework of a discrete fault model. In order to deal with such a problem, we base our work on the results achieved by Dragoni and Piombo (2015) and Dragoni and Lorenzano (2015). In the former work, the authors considered a two-asperity fault with purely elastic rheology and discussed the effect of stress perturbations due to earthquakes on neighbouring faults.…”
Section: Introductionmentioning
confidence: 99%
See 1 more Smart Citation